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Chapter 1
Preliminaries

1.1 The FEniCS Project

The FEniCS Project is a research and software project aiming at creating
mathematical methods and software for automated computational mathe-
matical modeling. This means creating easy, intuitive, efficient, and flexible
software for solving partial differential equations (PDEs) using finite element
methods. FEniCS was initially created in 2003 and is developed in collabo-
ration between researchers from a number of universities and research insti-
tutes around the world. For more information about FEniCS and the latest
updates of the FEniCS software and this tutorial, visit the FEniCS web page
at http://fenicsproject.org.

FEniCS consists of a number of building blocks (software components) that
together form the FEniCS software: DOLFIN, FFC, FIAT, UFL, mshr, and a
few others. FEniCS users rarely need to think about this internal organization
of FEniCS, but since even casual users may sometimes encounter the names
of various FEniCS components, we briefly list the components and their main
roles in FEniCS. DOLFIN is the computational high-performance C++ back-
end of FEniCS. DOLFIN implements data structures such as meshes, func-
tion spaces and functions, compute-intensive algorithms such as finite ele-
ment assembly and mesh refinement, and interfaces to linear algebra solvers
and data structures such as PETSc. DOLFIN also implements the FEniCS
problem-solving environment in both C++ and Python. FFC is the code
generation engine of FEniCS (the form compiler), responsible for generat-
ing efficient C++ code from high-level mathematical abstractions. FIAT is
the finite element backend of FEniCS, responsible for generating finite ele-
ment basis functions, UFL implements the abstract mathematical language
by which users may express variational problems, and mshr provides FEniCS
with mesh generation capabilities.

c© 2016, Hans Petter Langtangen, Anders Logg.
Released under CC Attribution 4.0 license



4 1 Preliminaries

1.2 What you will learn

The goal of this tutorial is to introduce the concept of programming finite
element solvers for PDEs and get you started with FEniCS through a series
of simple examples that demonstrate

• how to define a PDE problem as a finite element variational problem,
• how to create (mesh) simple domains,
• how to deal with Dirichlet, Neumann, and Robin conditions,
• how to deal with variable coefficients,
• how to deal with domains built of several materials (subdomains),
• how to compute derived quantities like the flux vector field or a functional

of the solution,
• how to quickly visualize the mesh, the solution, the flux, etc.,
• how to solve nonlinear PDEs,
• how to solve time-dependent PDEs,
• how to set parameters governing solution methods for linear systems,
• how to create domains of more complex shape.

1.3 Working with this tutorial

The mathematics of the illustrations is kept simple to better focus on FEniCS
functionality and syntax. This means that we mostly use the Poisson equation
and the time-dependent diffusion equation as model problems, often with
input data adjusted such that we get a very simple solution that can be
exactly reproduced by any standard finite element method over a uniform,
structured mesh. This latter property greatly simplifies the verification of the
implementations. Occasionally we insert a physically more relevant example
to remind the reader that the step from solving a simple model problem to a
challenging real-world problem is often quite short and easy with FEniCS.

Using FEniCS to solve PDEs may seem to require a thorough understand-
ing of the abstract mathematical framework of the finite element method
as well as expertise in Python programming. Nevertheless, it turns out that
many users are able to pick up the fundamentals of finite elements and Python
programming as they go along with this tutorial. Simply keep on reading and
try out the examples. You will be amazed at how easy it is to solve PDEs
with FEniCS!
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1.4 Obtaining the software

Reading this tutorial obviously requires access to the FEniCS software. FEn-
iCS is a complex software library, both in itself and due to its many depen-
dencies to state-of-the-art open-source scientific software libraries. Manually
building FEniCS and all its dependencies from source can thus be a daunting
task. Even for an expert who knows exactly how to configure and build each
component, a full build can literally take hours! In addition to the complexity
of the software itself, there is an additional layer of complexity in how many
different kinds of operating systems (GNU/Linux, Mac OS X, Windows) that
may be running on a user’s laptop or compute server, with different require-
ments for how to configure and build software.

For this reason, the FEniCS Project provides prebuilt packages to make
the installation easy, fast, and foolproof.

FEniCS download and installation
In this tutorial, we highlight the two main options for installing the
FEniCS software: Docker containers and Ubuntu packages. While the
Docker containers work on all operating systems, the Ubuntu packages
only work on Ubuntu-based systems. For more installation options, such
as building FEniCS from source, check out the official FEniCS instal-
lation instructions at http://fenicsproject.org/download.

1.4.1 Installation using Docker containers

A modern solution to the challenge of software installation on diverse soft-
ware platforms is to use so-called containers. The FEniCS Project pro-
vides custom-made containers that are controlled, consistent, and high-
performance software environments for FEniCS programming. FEniCS con-
tainers work equally well1 on all operating systems, including Linux, Mac
and Windows.

To use FEniCS containers, you must first install the Docker platform.
Docker installation is simple, just follow the instructions from the Docker
web page. Once you have installed Docker, just copy the following line into
a terminal window:

Terminal

1Running Docker containers on Mac and Windows involves a small performance
overhead compared to running Docker containers on Linux. However, this performance
penalty is typically small and is often compensated for by using the highly tuned and
optimized version of FEniCS that comes with the official FEniCS containers, compared
to building FEniCS and its dependencies from source on Mac or Windows.

https://www.docker.com
https://www.docker.com
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Terminal> curl -s https://get.fenicsproject.org | bash

The command above will install the program fenicsproject on your sys-
tem. This command lets you easily create FEniCS sessions (containers) on
your system:

Terminal

Terminal> fenicsproject run

This command has several useful options, such as easily switching between
the latest release of FEniCS, the latest development version and many more.
To learn more, type fenicsproject help.

Sharing files with FEniCS containers

When you run a FEniCS session using fenicsproject run, it will au-
tomatically share your current working directory (the directory from
which you run the fenicsproject command) with the FEniCS ses-
sion. When the FEniCS session starts, it will automatically enter into
a directory named shared which will be identical with your current
working directory on your host system. This means that you can eas-
ily edit files and write data inside the FEniCS session, and the files
will be directly accessible on your host system. It is recommended that
you edit your programs using your favorite editor (such as Emacs or
Vim) on your host system and use the FEniCS session only to run your
program(s).

1.4.2 Installation using Ubuntu packages

For users of Ubuntu GNU/Linux, FEniCS can also be installed easily via the
standard Ubuntu package manager apt-get. Just copy the following lines
into a terminal window:

Terminal

Terminal> sudo add-apt-repository ppa:fenics-packages/fenics
Terminal> sudo apt-get update
Terminal> sudo apt-get install fenics
Terminal> sudo apt-get dist-upgrade

This will add the FEniCS package archive (PPA) to your Ubuntu com-
puter’s list of software sources and then install FEniCS. This step will also
automatically install packages for dependencies of FEniCS.
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Watch out for old packages!

In addition to being available from the FEniCS PPA, the FEniCS soft-
ware is also part of the official Ubuntu repositories. However, depending
on which release of Ubuntu you are running, and when this release was
created in relation to the latest FEniCS release, the official Ubuntu
repositories might contain an outdated version of FEniCS. For this rea-
son, it is better to install from the FEniCS PPA.

1.4.3 Testing your installation

Once you have installed FEniCS, you should make a quick test to see that
your installation works properly. To do this, type the following command in
a FEniCS-enabled2 terminal:

Terminal

Terminal> python -c ’import fenics’

If all goes well, you should be able to run this command without any error
message (or any other output).

1.5 Obtaining the tutorial examples

In this tutorial, you will learn finite element and FEniCS programming
through a number of example programs that demonstrate both how to solve
particular PDEs using the finite element method, how to program solvers in
FEniCS, and how to create well-designed Python codes that can later be ex-
tended to solve more complex problems. All example programs are available
from the web page of this book at http://fenicsproject.org/tutorial.
The programs as well as the source code for this text can also be accessed
directly from the Git repository for this book.

2For users of FEniCS containers, this means first running the command
fenicsproject run.

https://github.com/hplgit/fenics-tutorial/
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1.6 Background knowledge

1.6.1 Programming in Python

While you can likely pick up basic Python programming by working through
the examples in this tutorial, you may want to have some additional material
on the Python language. A natural starting point for beginners is the classical
Python Tutorial [11], or a tutorial geared towards scientific computing [20]. In
the latter, you will also find pointers to other tutorials for scientific computing
in Python. Among ordinary books we recommend the general introduction
Dive into Python [25] as well as texts that focus on scientific computing with
Python [15–19].

Python versions

Python comes in two versions, 2 and 3, and these are not compatible.
FEniCS has a code base that runs under both versions. All the programs
in this tutorial are also developed such that they can be run under both
Python 2 and 3. Programs that need to print must then start with

from __future__ import print_function

to enable the print function from Python 3 in Python 2. All use of
print in the programs in this tutorial consists of function calls, like
print(’a:’, a). Almost all other constructions are of a form that
looks the same in Python 2 and 3.

1.6.2 The finite element method

There exist many good books on the finite element method. The books typi-
cally fall in either of two categories: the abstract mathematical version of the
method or the engineering “structural analysis” formulation. FEniCS builds
heavily on concepts from the abstract mathematical exposition. The first au-
thor has in development a book [22] that explains all details of the finite
element method in an intuitive way, though with the abstract mathematical
formulations that FEniCS employ.

The finite element text by Larson and Bengzon [23] is our recommended
introduction to the finite element method, with a mathematical notation
that goes well with FEniCS. An easy-to-read book, which also provides a
good general background for using FEniCS, is Gockenbach [12]. The book by
Donea and Huerta [8] has a similar style, but aims at readers with interest

http://hplgit.github.io/fem-book/doc/web/index.html
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in fluid flow problems. Hughes [14] is also recommended, especially for those
interested in solid mechanics and heat transfer applications.

Readers with a background in the engineering “structural analysis” version
of the finite element method may find Bickford [3] as an attractive bridge
over to the abstract mathematical formulation that FEniCS builds upon.
Those who have a weak background in differential equations in general should
consult a more fundamental book, and Eriksson et al [9] is a very good choice.
On the other hand, FEniCS users with a strong background in mathematics
and interest in the mathematical properties of the finite element method, will
appreciate the texts by Brenner and Scott [5], Braess [4], Ern and Guermond
[10], Quarteroni and Valli [26], or Ciarlet [7].





Chapter 2
Fundamentals: Solving the Poisson
equation

The goal of this chapter is to show how the Poisson equation, the most basic of
all PDEs, can be quickly solved with a few lines of FEniCS code. We introduce
the most fundamental FEniCS objects such as Mesh, Function, FunctionSpace,
TrialFunction, and TestFunction, and learn how to write a basic PDE solver,
including the specification of the mathematical variational problem, applying
boundary conditions, calling the FEniCS solver, and plotting the solution.

2.1 Mathematical problem formulation

Most books on a programming language start with a “Hello, World!” program.
That is, one is curious about how a very fundamental task is expressed in the
language, and writing a text to the screen can be such a task. In the world
of finite element methods for PDEs, the most fundamental task must be to
solve the Poisson equation. Our counterpart to the classical “Hello, World!”
program therefore solves

−∇2u(x) = f(x), x in Ω, (2.1)
u(x) = uD(x), x on ∂Ω . (2.2)

Here, u = u(x) is the unknown function, f = f(x) is a prescribed function,
∇2 is the Laplace operator (also often written as ∆), Ω is the spatial domain,
and ∂Ω is the boundary of Ω. A stationary PDE like this, together with a
complete set of boundary conditions, constitute a boundary-value problem,
which must be precisely stated before it makes sense to start solving it with
FEniCS.

In two space dimensions with coordinates x and y, we can write out the
Poisson equation as

c© 2016, Hans Petter Langtangen, Anders Logg.
Released under CC Attribution 4.0 license
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− ∂
2u

∂x2 −
∂2u

∂y2 = f(x,y) . (2.3)

The unknown u is now a function of two variables, u = u(x,y), defined over
a two-dimensional domain Ω.

The Poisson equation arises in numerous physical contexts, including heat
conduction, electrostatics, diffusion of substances, twisting of elastic rods, in-
viscid fluid flow, and water waves. Moreover, the equation appears in numer-
ical splitting strategies for more complicated systems of PDEs, in particular
the Navier–Stokes equations.

Solving a PDE such as the Poisson equation in FEniCS consists of the
following steps:

1. Identify the computational domain (Ω), the PDE, its boundary conditions,
and source terms (f).

2. Reformulate the PDE as a finite element variational problem.
3. Write a Python program which defines the computational domain, the

variational problem, the boundary conditions, and source terms, using the
corresponding FEniCS abstractions.

4. Call FEniCS to solve the PDE and, optionally, extend the program to
compute derived quantities such as fluxes and averages, and visualize the
results.

We shall now go through steps 2–4 in detail. The key feature of FEniCS is
that steps 3 and 4 result in fairly short code, while a similar program in
most other software frameworks for PDEs require much more code and more
technically difficult programming.

What makes FEniCS attractive?
Although many frameworks have a really elegant “Hello, World!” ex-
ample on the Poisson equation, FEniCS is to our knowledge the only
framework where the code stays compact and nice, very close to the
mathematical formulation, also when the complexity increases with,
e.g., systems of PDEs and mixed finite elements for computing on mas-
sively high-performance parallel platforms.

2.1.1 Finite element variational formulation

FEniCS is based on the finite element method, which is a general and effi-
cient mathematical machinery for numerical solution of PDEs. The starting
point for the finite element methods is a PDE expressed in variational form.
Readers who are not familiar with variational problems will get a very brief
introduction to the topic in this tutorial, but reading a proper book on the
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finite element method in addition is encouraged. Section 1.6.2 contains a list
of some suitable books. Experience shows that you can work with FEniCS
as a tool to solve your PDEs even without thorough knowledge of the finite
element method, as long as you get somebody to help you with formulating
the PDE as a variational problem.

The basic recipe for turning a PDE into a variational problem is to multiply
the PDE by a function v, integrate the resulting equation over the domain Ω,
and perform integration by parts of terms with second-order derivatives. The
function v which multiplies the PDE is called a test function. The unknown
function u to be approximated is referred to as a trial function. The terms
test and trial function are used in FEniCS programs too. Suitable function
spaces must be specified for the test and trial functions. For standard PDEs
arising in physics and mechanics such spaces are well known.

In the present case, we first multiply the Poisson equation by the test
function v and integrate over Ω:

−
∫
Ω

(∇2u)vdx=
∫
Ω
fvdx. (2.4)

A common rule when we derive variational formulations is that we try to keep
the order of the derivatives of u and v as low as possible (this will enlarge
the collection of finite elements that can be used in the problem). Here, we
have a second-order spatial derivative of u, which can be transformed to a
first-derivative of u and v by applying the technique of integration by parts.
A Laplace term will always be subject to integration by parts1. The formula
reads

−
∫
Ω

(∇2u)vdx=
∫
Ω
∇u ·∇vdx−

∫
∂Ω

∂u

∂n
vds, (2.5)

where ∂u
∂n =∇u ·n is the derivative of u in the outward normal direction n

on the boundary.
Another feature of variational formulations is that the test function v is

required to vanish on the parts of the boundary where the solution u is known
(the book [22] explains in detail why this requirement is necessary). In the
present problem, this means that v = 0 on the whole boundary ∂Ω. The
second term on the right-hand side of (2.5) therefore vanishes. From (2.4)
and (2.5) it follows that ∫

Ω
∇u ·∇vdx=

∫
Ω
fvdx. (2.6)

If we require that this equation holds for all test functions v in some suit-
able space V̂ , the so-called test space, we obtain a well-defined mathematical
problem that uniquely determines the solution u which lies in some (possi-

1Integration by parts in more than one space dimension is based on Gauss’ divergence
theorem. Simply take (2.5) as the formula to be used.

https://en.wikipedia.org/wiki/Integration_by_parts
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bly different) function space V , the so-called trial space. We refer to (2.6) as
the weak form or variational form of the original boundary-value problem
(2.1)–(2.2).

The proper statement of our variational problem now goes as follows: Find
u ∈ V such that ∫

Ω
∇u ·∇vdx=

∫
Ω
fvdx ∀v ∈ V̂ . (2.7)

The trial and test spaces V and V̂ are in the present problem defined as

V = {v ∈H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈H1(Ω) : v = 0 on ∂Ω} .

In short, H1(Ω) is the mathematically well-known Sobolev space contain-
ing functions v such that v2 and |∇v|2 have finite integrals over Ω (essentially
meaning that the functions are continuous). The solution of the underlying
PDE must lie in a function space where also the derivatives are continuous,
but the Sobolev space H1(Ω) allows functions with discontinuous derivatives.
This weaker continuity requirement of u in the variational statement (2.7), as
a result of the integration by parts, has great practical consequences when it
comes to constructing finite element function spaces. In particular, it allows
the use of piecewise polynomial function spaces; i.e., function spaces con-
structed by stitching together polynomial functions on simple domains such
as intervals, triangles, or tetrahedrons.

The variational problem (2.7) is a continuous problem: it defines the solu-
tion u in the infinite-dimensional function space V . The finite element method
for the Poisson equation finds an approximate solution of the variational prob-
lem (2.7) by replacing the infinite-dimensional function spaces V and V̂ by
discrete (finite-dimensional) trial and test spaces Vh ⊂ V and V̂h ⊂ V̂ . The
discrete variational problem reads: Find uh ∈ Vh ⊂ V such that∫

Ω
∇uh ·∇vdx=

∫
Ω
fvdx ∀v ∈ V̂h ⊂ V̂ . (2.8)

This variational problem, together with a suitable definition of the function
spaces Vh and V̂h, uniquely define our approximate numerical solution of Pois-
son’s equation (2.1). The mathematical framework may seem complicated at
first glance, but the good news is that the finite element variational problem
(2.8) looks the same as the continuous variational problem (2.7), and FEniCS
can automatically solve variational problems like (2.8)!

What we mean by the notation u and V
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The mathematics literature on variational problems writes uh for the
solution of the discrete problem and u for the solution of the continu-
ous problem. To obtain (almost) a one-to-one relationship between the
mathematical formulation of a problem and the corresponding FEniCS
program, we shall drop the subscript h and use u for the solution of the
discrete problem and ue for the exact solution of the continuous prob-
lem, if we need to explicitly distinguish between the two. Similarly, we
will let V denote the discrete finite element function space in which we
seek our solution.

2.1.2 Abstract finite element variational formulation

It turns out to be convenient to introduce the following canonical notation
for variational problems:

a(u,v) = L(v) . (2.9)

For the Poisson equation, we have:

a(u,v) =
∫
Ω
∇u ·∇vdx, (2.10)

L(v) =
∫
Ω
fvdx. (2.11)

From the mathematics literature, a(u,v) is known as a bilinear form and
L(v) as a linear form. We shall in every linear problem we solve identify the
terms with the unknown u and collect them in a(u,v), and similarly collect
all terms with only known functions in L(v). The formulas for a and L are
then coded directly in the program.

FEniCS provides all the necessary mathematical notation needed to ex-
press the variational problem a(u,v) =L(v). To solve a linear PDE in FEniCS,
such as the Poisson equation, a user thus needs to perform only two steps:

• Choose the finite element spaces V and V̂ by specifying the domain (the
mesh) and the type of function space (polynomial degree and type).

• Express the PDE as a (discrete) variational problem: find u ∈ V such that
a(u,v) = L(v) for all v ∈ V̂ .
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2.1.3 Choosing a test problem

The Poisson problem (2.1)–(2.2) has so far featured a general domain Ω and
general functions uD for the boundary conditions and f for the right-hand
side. For our first implementation we will need to make specific choices for
Ω, uD , and f . It will be wise to construct a problem where we can easily
check that the computed solution is correct. Solutions that are lower-order
polynomials are primary candidates. Standard finite element function spaces
of degree r will exactly reproduce polynomials of degree r. And piecewise
linear elements (r = 1) are able to exactly reproduce a quadratic polynomial
on a uniformly partitioned mesh. This important result can be used to verify
our implementation. We just manufacture some quadratic function in 2D as
the exact solution, say

ue(x,y) = 1 +x2 + 2y2 . (2.12)

By inserting (2.12) into the Poisson equation (2.1), we find that ue(x,y) is a
solution if

f(x,y) =−6, uD(x,y) = ue(x,y) = 1 +x2 + 2y2,

regardless of the shape of the domain as long as ue is prescribed along the
boundary. We choose here, for simplicity, the domain to be the unit square,

Ω = [0,1]× [0,1] .

This simple but very powerful method for constructing test problems is called
the method of manufactured solutions: pick a simple expression for the exact
solution, plug it into the equation to obtain the right-hand side (source term
f), then solve the equation with this right-hand side and try to reproduce
the exact solution.

Tip: Try to verify your code with exact numerical solutions!

A common approach to testing the implementation of a numerical
method is to compare the numerical solution with an exact analyti-
cal solution of the test problem and conclude that the program works if
the error is “small enough”. Unfortunately, it is impossible to tell if an
error of size 10−5 on a 20×20 mesh of linear elements is the expected
(in)accuracy of the numerical approximation or if the error also contains
the effect of a bug in the code. All we usually know about the numerical
error is its asymptotic properties, for instance that it is proportional to
h2 if h is the size of a cell in the mesh. Then we can compare the error
on meshes with different h-values to see if the asymptotic behavior is
correct. This is a very powerful verification technique and is explained
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in detail in Section 5.3.4. However, if we have a test problem for which
we know that there should be no approximation errors, we know that
the analytical solution of the PDE problem should be reproduced to
machine precision by the program. That is why we emphasize this kind
of test problems throughout this tutorial. Typically, elements of degree
r can reproduce polynomials of degree r exactly, so this is the start-
ing point for constructing a solution without numerical approximation
errors.

2.2 FEniCS implementation

2.2.1 The complete program

A FEniCS program for solving our test problem for the Poisson equation in
2D with the given choices of uD , f , and Ω may look as follows:

from fenics import *

# Create mesh and define function space
mesh = UnitSquareMesh(8, 8)
V = FunctionSpace(mesh, ’P’, 1)

# Define boundary condition
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution and mesh
u.rename(’u’, ’solution’)
plot(u)
plot(mesh)

# Save solution to file in VTK format
vtkfile = File(’poisson/solution.pvd’)
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vtkfile << u

# Compute error in L2 norm
error_L2 = errornorm(u_D, u, ’L2’)

# Compute maximum error at vertices
vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - vertex_values_u))

# Print errors
print(’error_L2 =’, error_L2)
print(’error_max =’, error_max)

# Hold plot
interactive()

The complete code can be found in the file ft01_poisson.py.

2.2.2 Running the program

The FEniCS program must be available in a plain text file, written with a
text editor such as Atom, Sublime Text, Emacs, Vim, or similar.

There are several ways to run a Python program like ft01_poisson.py:

• Use a terminal window.
• Use an integrated development environment (IDE), e.g., Spyder.
• Use a Jupyter notebook.

Terminal window. Open a terminal window, move to the directory con-
taining the program and type the following command:

Terminal

Terminal> python ft01_poisson.py

Note that this command must be run in a FEniCS-enabled terminal. For
users of the FEniCS Docker containers, this means that you must type this
command after you have started a FEniCS session using fenicsproject run
or fenicsproject start.

When running the above command, FEniCS will run the program to com-
pute the approximate solution u. The approximate solution u will be com-
pared to the exact solution ue and the error in the L2 and maximum norms
will be printed. Since we know that our approximate solution should repro-
duce the exact solution to within machine precision, this error should be
small, something on the order of 10−15.

https://github.com/hplgit/fenics-tutorial/blob/master/src/ft01_poisson.py
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Fig. 2.1 Plot of the solution in the first FEniCS example.

Spyder. Many prefer to work in an integrated development environment
that provides an editor for programming, a window for executing code, a
window for inspecting objects, etc. The Spyder tool comes with all major
Python installations. Just open the file ft01_poisson.py and press the play
button to run it. We refer to the Spyder tutorial to learn more about working
in the Spyder environment. Spyder is highly recommended if you are used to
working in the graphical MATLAB environment.

Jupyter notebooks. Notebooks make it possible to mix text and executable
code in the same document, but you can also just use it to run programs in a
web browser. Start jupyter notebook from a terminal window, find theNew
pulldown menu in the upper right part of the GUI, choose a new notebook in
Python 2 or 3, write %load ft01_poisson.py in the blank cell of this note-
book, then press Shift+Enter to execute the cell. The file ft01_poisson.py
will then be loaded into the notebook. Re-execute the cell (Shift+Enter) to
run the program. You may divide the entire program into several cells to
examine intermediate results: place the cursor where you want to split the
cell and choose Edit - Split Cell.

2.3 Dissection of the program

We shall now dissect our FEniCS program in detail. The listed FEniCS pro-
gram defines a finite element mesh, a finite element function space V on
this mesh, boundary conditions for u (the function uD), and the bilinear and
linear forms a(u,v) and L(v). Thereafter, the unknown trial function u is
computed. Then we can compare the numerical and exact solution as well as
visualize the computed solution u.



20 2 Fundamentals: Solving the Poisson equation

2.3.1 The important first line

The first line in the program,

from fenics import *

imports the key classes UnitSquareMesh, FunctionSpace, Function, and so
forth, from the FEniCS library. All FEniCS programs for solving PDEs by
the finite element method normally start with this line.

2.3.2 Generating simple meshes

The statement

mesh = UnitSquareMesh(8, 8)

defines a uniform finite element mesh over the unit square [0,1]× [0,1]. The
mesh consists of cells, which in 2D are triangles with straight sides. The
parameters 8 and 8 specify that the square should be divided into 8× 8
rectangles, each divided into a pair of triangles. The total number of triangles
(cells) thus becomes 128. The total number of vertices in the mesh is 9 ·9 = 81.
In later chapters, you will learn how to generate more complex meshes.

2.3.3 Defining the finite element function space

Having a mesh, we can define a finite element function space V over this mesh:

V = FunctionSpace(mesh, ’P’, 1)

The second argument ’P’ specifies the type of element, while the third
argument is the degree of the basis functions of the element. The type of
element is here P, implying the standard Lagrange family of elements. You
may also use ’Lagrange’ to specify this type of element. FEniCS supports
all simplex element families and the notation defined in the Periodic Table
of the Finite Elements [2].

The third argument 1 specifies the degree of the finite element. In this case,
the standard P1 linear Lagrange element, which is a triangle with nodes at the
three vertices. Some finite element practitioners refer to this element as the
“linear triangle”. The computed solution u will be continuous and linearly
varying in x and y over each cell in the mesh. Higher-degree polynomial
approximations over each cell are trivially obtained by increasing the third
parameter to FunctionSpace, which will then generate function spaces of
type P2, P3, and so forth. Changing the second parameter to ’DP’ creates a
function space for discontinuous Galerkin methods.

http://femtable.org
http://femtable.org
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2.3.4 Defining the trial and test functions

In mathematics, we distinguish between the trial and test spaces V and V̂ .
The only difference in the present problem is the boundary conditions. In
FEniCS we do not specify the boundary conditions as part of the function
space, so it is sufficient to work with one common space V for the trial and
test functions in the program:

u = TrialFunction(V)
v = TestFunction(V)

2.3.5 Defining the boundary and the boundary
conditions

The next step is to specify the boundary condition: u = uD on ∂Ω. This is
done by

bc = DirichletBC(V, u_D, boundary)

where u_D is an expression defining the solution values on the boundary,
and boundary is a function (or object) defining which points belong to the
boundary.

Boundary conditions of the type u= uD are known as Dirichlet conditions.
For the present finite element method for the Poisson problem, they are also
called essential boundary conditions, as they need to be imposed explicitly as
part of the trial space (in contrast to being defined implicitly as part of the
variational formulation). Naturally, the FEniCS class used to define Dirichlet
boundary conditions is named DirichletBC.

The variable u_D refers to an Expression object, which is used to represent
a mathematical function. The typical construction is

u_D = Expression(formula, degree=1)

where formula is a string containing the mathematical expression. This for-
mula is written with C++ syntax. The expression is automatically turned
into an efficient, compiled C++ function. The second argument degree is a
parameter that specifies how the expression should be treated in computa-
tions. FEniCS will interpolate the expression into some finite element space.
It is usually a good choice to interpolate expressions into the same space V
that is used for the trial and test functions, but in certain cases, one may
want to use a more accurate (higher degree) representation of expressions.

The expression may depend on the variables x[0] and x[1] correspond-
ing to the x and y coordinates. In 3D, the expression may also depend on
the variable x[2] corresponding to the z coordinate. With our choice of
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uD(x,y) = 1+x2 +2y2, the formula string can be written as 1 + x[0]*x[0]
+ 2*x[1]*x[1]:

u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2)

We set the degree to 2 so that u_D may represent the exact quadratic
solution to our test problem.

String expressions must have valid C++ syntax!

The string argument to an Expression object must obey C++ syntax.
Most Python syntax for mathematical expressions is also valid C++
syntax, but power expressions make an exception: p**a must be writ-
ten as pow(p, a) in C++ (this is also an alternative Python syntax).
The following mathematical functions can be used directly in C++ ex-
pressions when defining Expression objects: cos, sin, tan, acos, asin,
atan, atan2, cosh, sinh, tanh, exp, frexp, ldexp, log, log10, modf,
pow, sqrt, ceil, fabs, floor, and fmod. Moreover, the number π is
available as the symbol pi. All the listed functions are taken from the
cmath C++ header file, and one may hence consult the documentation
of cmath for more information on the various functions.

If/else tests are possible using the C syntax for inline branching. The
function

f(x,y) =
{
x2, x,y ≥ 0
2, otherwise

is implemented as

f = Expression(’x[0] >= 0 && x[1] >= 0 ? pow(x[0], 2) : 2’, degree=1)

Parameters in expression strings are allowed, but must be initial-
ized via keyword arguments when creating the Expression object. For
example, the function f(x) = e−κπ

2t sin(πkx) can be coded as

f = Expression(’exp(-kappa*pow(pi, 2)*t)*sin(pi*k*x[0])’, degree=1,
kappa=1.0, t=0, k=4)

At any time, parameters can be updated:

f.t += dt
f.k = 10

The function boundary specifies which points that belong to the part of
the boundary where the boundary condition should be applied:

def boundary(x, on_boundary):
return on_boundary
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A function like boundary for marking the boundary must return a boolean
value: True if the given point x lies on the Dirichlet boundary and False
otherwise. The argument on_boundary is True if x is on the physical bound-
ary of the mesh, so in the present case, where we are supposed to return
True for all points on the boundary, we can just return the supplied value of
on_boundary. The boundary function will be called for every discrete point
in the mesh, which allows us to have boundaries where u are known also
inside the domain, if desired.

One way to think about the specification of boundaries in FEniCS is that
FEniCS will ask you (or rather the function boundary which you have imple-
mented) whether or not a specific point x is part of the boundary. FEniCS
already knows whether the point belongs to the actual boundary (the math-
ematical boundary of the domain) and kindly shares this information with
you in the variable on_boundary. You may choose to use this information (as
we do here), or ignore it completely.

The argument on_boundary may also be omitted, but in that case we need
to test on the value of the coordinates in x:

def boundary(x):
return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] == 1

Comparing floating-point values using an exact match test with == is not good
programming practice, because small round-off errors in the computations of
the x values could make a test x[0] == 1 become false even though x lies on
the boundary. A better test is to check for equality with a tolerance, either
explicitly

def boundary(x):
return abs(x[0]) < tol or abs(x[1]) < tol \

or abs((x[0] - 1) < tol or abs(x[1] - 1) < tol

or with the near command in FEniCS:

def boundary(x):
return near(x[0], 0, tol) or near(x[1], 0, tol) \

or near(x[0], 1, tol) or near(x[1], 1, tol)

Never use == for comparing real numbers!

A comparison like x[0] == 1 should never be used if x[0] is a real
number, because rounding errors in x[0] may make the test fail even
when it is mathematically correct. Consider

>>> 0.1 + 0.2 == 0.3
False
>>> 0.1 + 0.2
0.30000000000000004
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Comparison of real numbers needs to be made with tolerances! The
values of the tolerances depend on the size of the numbers involved in
arithmetic operations:

>>> abs(0.1 + 0.2 - 0.3)
5.551115123125783e-17
>>> abs(1.1 + 1.2 - 2.3)
0.0
>>> abs(10.1 + 10.2 - 20.3)
3.552713678800501e-15
>>> abs(100.1 + 100.2 - 200.3)
0.0
>>> abs(1000.1 + 1000.2 - 2000.3)
2.2737367544323206e-13
>>> abs(10000.1 + 10000.2 - 20000.3)
3.637978807091713e-12

For numbers of unit size, tolerances as low as 3 ·10−16 can be used (in
fact, this tolerance is known as the constant DOLFIN_EPS in FEniCS).
Otherwise, an appropriately scaled tolerance must be used.

2.3.6 Defining the source term

Before defining the bilinear and linear forms a(u,v) and L(v) we have to
specify the source term f :

f = Expression(’-6’, degree=1)

When f is constant over the domain, f can be more efficiently represented
as a Constant:

f = Constant(-6)

2.3.7 Defining the variational problem

We now have all the ingredients we need to define the variational problem:

a = dot(grad(u), grad(v))*dx
L = f*v*dx

In essence, these two lines specify the PDE to be solved. Note the very close
correspondence between the Python syntax and the mathematical formulas
∇u · ∇vdx and fvdx. This is a key strength of FEniCS: the formulas in
the variational formulation translate directly to very similar Python code,
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a feature that makes it easy to specify and solve complicated PDE prob-
lems. The language used to express weak forms is called UFL (Unified Form
Language) [1, 24] and is an integral part of FEniCS.

2.3.8 Forming and solving the linear system

Having defined the finite element variational problem and boundary condi-
tion, we can now ask FEniCS to compute the solution:

u = Function(V)
solve(a == L, u, bc)

Note that we first defined the variable u as a TrialFunction and used it
to represent the unknown in the form a. Thereafter, we redefined u to be a
Function object representing the solution; i.e., the computed finite element
function u. This redefinition of the variable u is possible in Python and is often
used in FEniCS applications for linear problems. The two types of objects
that u refers to are equal from a mathematical point of view, and hence it is
natural to use the same variable name for both objects.

2.3.9 Plotting the solution

Once the solution has been computed, it can be visualized by the plot()
command:

plot(u)
plot(mesh)
interactive()

Clicking on Help or typing h in the plot windows brings up a list of
commands. For example, typing m brings up the mesh. With the left, middle,
and right mouse buttons you can rotate, translate, and zoom (respectively)
the plotted surface to better examine what the solution looks like. You must
click Ctrl+q to kill the plot window and continue execution beyond the
command interactive(). In the example program, we have therefore placed
the call to interactive() at the very end. Alternatively, one may use the
command plot(u, interactive=True) which again means you can interact
with the plot window and that execution will be halted until the plot window
is closed.

Figure 2.1 displays the resulting u function.
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2.3.10 Exporting and post-processing the solution

It is also possible to save the computed solution to file for post-processing,
e.g., in VTK format:

vtkfile = File(’poisson/solution.pvd’)
vtkfile << u

The solution.pvd file can now be loaded into any front-end to VTK, in
particular ParaView or VisIt. The plot() function is intended for quick ex-
amination of the solution during program development. More in-depth visual
investigations of finite element solutions will normally benefit from using
highly professional tools such as ParaView and VisIt.

Prior to plotting and storing solutions to file it is wise to give u a proper
name by u.rename(’u’, ’solution’). Then u will be used as name in plots
(rather than the more cryptic default names like f_7).

Once the solution has been stored to file, it can be opened in Paraview
by choosing File - Open. Find the file solution.pvd, and click the green
Apply button to the left in the GUI. A 2D color plot of u(x,y) is then
shown. You can save the figure to file by File - Export Scene... and choos-
ing a suitable filename. For more information about how to install and use
Paraview, see the Paraview web page.

Fig. 2.2 Visualization of the solution of the test problem in ParaView, with contour
lines added in the right plot.

2.3.11 Computing the error

Finally, we compute the error to check the accuracy of the solution. We do
this by comparing the finite element solution u with the exact solution u_D,

http://www.paraview.org/
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which in this example happens to be the same as the Expression used to set
the boundary conditions. We compute the error in two different ways. First,
we compute the L2 norm of the error, defined by

E =

√∫
Ω

(uD −u)2 dx.

Since the exact solution is quadratic and the finite element solution is piece-
wise linear, this error will be nonzero. To compute this error in FEniCS, we
simply write

error_L2 = errornorm(u_D, u, ’L2’)

The errornorm() function can also compute other error norms such as the
H1 norm. Type pydoc fenics.errornorm in a terminal window for details.

We also compute the maximum value of the error at all the vertices of the
finite element mesh. As mentioned above, we expect this error to be zero to
within machine precision for this particular example. To compute the error
at the vertices, we first ask FEniCS to compute the value of both u_D and u
at all vertices, and then subtract the results:

vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - vertex_values_u))

We have here used the maximum and absolute value functions from numpy,
because these are much more efficient for large arrays (a factor of 30) than
Python’s built-n max and abs functions.

How to check that the error vanishes
With inexact arithmetics, as we always have on a computer, the max-
imum error at the vertices is not zero, but should be a small number.
The machine precision is about 10−16, but in finite element calculations,
rounding errors of this size may accumulate, to produce an error larger
than 10−16. Experiments show that increasing the number of elements
and increasing the degree of the finite element polynomials increases the
error. For a mesh with 2× (20× 20) cubic Lagrange elements (degree
3) the error is about 2 ·10−12, while for 81 linear elements the error is
about 2 ·10−15.
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2.3.12 Examining degrees of freedom and vertex values

A finite element function like u is expressed as a linear combination of basis
functions φj , spanning the space V :

u=
N∑
j=1

Ujφj . (2.13)

By writing solve(a == L, u, bc) in the program, a linear system will be
formed from a and L, and this system is solved for the values U1, . . . ,UN .
The values U1, . . . ,UN are known as the degrees of freedom (“dofs”) or nodal
values of u. For Lagrange elements (and many other element types) Uj is
simply the value of u at the node with global number j. The locations of
the nodes and cell vertices coincide for linear Lagrange elements, while for
higher-order elements there are additional nodes associated with the facets,
edges and sometimes also the interior of cells.

Having u represented as a Function object, we can either evaluate u(x)
at any point x in the mesh (expensive operation!), or we can grab all the
degrees of freedom in the vector U directly by

nodal_values_u = u.vector()

The result is a Vector object, which is basically an encapsulation of the
vector object used in the linear algebra package that is used to solve the linear
system arising from the variational problem. Since we program in Python it
is convenient to convert the Vector object to a standard numpy array for
further processing:

array_u = nodal_values_u.array()

With numpy arrays we can write MATLAB-like code to analyze the data.
Indexing is done with square brackets: array_u[j], where the index j al-
ways starts at 0. If the solution is computed with piecewise linear Lagrange
elements (P1), then the size of the array array_u is equal to the number
of vertices, and each array_u[j] is the value at some vertex in the mesh.
However, the degrees of freedom are not necessarily numbered in the same
way as the vertices of the mesh, see Section 5.2.6 for details. If we there-
fore want to know the values at the vertices, we need to call the function
u.compute_vertex_values(). This function returns the values at all the
vertices of the mesh as a numpy array with the same numbering as for the
vertices of the mesh, for example:

vertex_values_u = u.compute_vertex_values()

Note that for P1 elements the arrays array_u and vertex_values_u have
the same lengths and contain the same values, albeit in different order.
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2.4 Deflection of a membrane

Our first FEniCS program for the Poisson equation targeted a simple test
problem where we could easily verify the implementation. Now we turn the
attention to a more physically relevant problem, in a non-trivial geometry,
and that results in solutions of somewhat more exciting shape.

We want to compute the deflection D(x,y) of a two-dimensional, circular
membrane, subject to a load p over the membrane. The appropriate PDE
model is

−T∇2D = p(x,y) in Ω = {(x,y) |x2 +y2 ≤R} . (2.14)

Here, T is the tension in the membrane (constant), and p is the external
pressure load. The boundary of the membrane has no deflection, implying
D= 0 as boundary condition. A localized load can be modeled as a Gaussian
function:

p(x,y) = A

2πσ exp
(
−1

2

(
x−x0
σ

)2
− 1

2

(
y−y0
σ

)2
)
. (2.15)

The parameter A is the amplitude of the pressure, (x0,y0) the localization of
the maximum point of the load, and σ the “width” of p.

2.4.1 Scaling the equation

The localization of the pressure, (x0,y0), is for simplicity set to (0,R0). There
are many physical parameters in this problem, and we can benefit from group-
ing them by means of scaling. Let us introduce dimensionless coordinates
x̄= x/R, ȳ = y/R, and a dimensionless deflection w =D/Dc, where Dc is a
characteristic size of the deflection. Introducing R̄0 =R0/R, we get

−∂
2w

∂x̄2 −
∂2w

∂ȳ2 = αexp
(
−β2(x̄2 + (ȳ− R̄0)2)

)
for x̄2 + ȳ2 < 1,

where

α= R2A

2πTDcσ
, β = R√

2σ
.

With an appropriate scaling, w and its derivatives are of size unity, so the
left-hand side of the scaled PDE is about unity in size, while the right-hand
side has α as its characteristic size. This suggest choosing α to be unity, or
around unit. We shall in this particular case choose α = 4. With this value,
the solution is w(x̄, ȳ) = 1− x̄2− ȳ2. (One can also find the analytical solution
in scaled coordinates and show that the maximum deflection D(0,0) is Dc
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if we choose α= 4 to determine Dc.) With Dc =AR2/(8πσT ) and dropping
the bars we get the scaled problem

−∇2w = 4exp
(
−β2(x2 + (y−R0)2)

)
, (2.16)

to be solved over the unit circle with w = 0 on the boundary. Now there are
only two parameters to vary: the dimensionless extent of the pressure, β, and
the localization of the pressure peak, R0 ∈ [0,1]. As β→ 0, we have a special
case with solution w = 1−x2−y2.

Given a computed scaled solution w, the physical deflection can be com-
puted by

D = AR2

8πσT w.

Just a few modifications are necessary in our previous program to solve
this new problem.

2.4.2 Defining the mesh

A mesh over the unit circle can be created by the mshr tool in FEniCS:

from mshr import *
domain = Circle(Point(0.0, 0.0), 1.0)
mesh = generate_mesh(domain, 20)
plot(mesh, interactive=True)

The Circle shape from mshr takes the center and radius of the circle as the
two first arguments, while n is the resolution, here the suggested number of
cells per radius.

2.4.3 Defining the load

The right-hand side pressure function is represented by an Expression ob-
ject. There are two physical parameters in the formula for f that enter the
expression string and these parameters must have their values set by keyword
arguments:

beta = 8
R0 = 0.6
p = Expression(

’4*exp(-pow(beta, 2)*(pow(x[0], 2) + pow(x[1] - R0, 2)))’,
beta=beta, R0=R0)

The coordinates in Expression objects must be a vector with indices 0, 1,
and 2, and with the name x. Otherwise we are free to introduce names of
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parameters as long as these are given default values by keyword arguments.
All the parameters initialized by keyword arguments can at any time have
their values modified. For example, we may set

p.beta = 12
p.R0 = 0.3

2.4.4 Defining the variational problem

We may introduce w instead of u as primary unknown and p instead of f as
right-hand side function:

w = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(w), grad(v))*dx
L = p*v*dx

w = Function(V)
solve(a == L, w, bc)

2.4.5 Plotting the solution

It is of interest to visualize the pressure p along with the deflection w so
that we can examine membrane’s response to the pressure. We must then
transform the formula (Expression) to a finite element function (Function).
The most natural approach is to construct a finite element function whose
degrees of freedom are calculated from p. That is, we interpolate p:

p = interpolate(p, V)

Note that the assignment to p destroys the previous Expression object p,
so if it is of interest to still have access to this object, another name must be
used for the Function object returned by interpolate.

We can now plot w and p on the screen as well as save the fields to file in
VTK format:

plot(w, title=’Deflection’)
plot(p, title=’Load’)

vtkfile_w = File(’poisson_membrane/deflection.pvd’)
vtkfile_w << w
vtkfile_p = File(’poisson_membrane/load.pvd’)
vtkfile_p << p

Figure 2.3 shows the result of the plot commands.



32 2 Fundamentals: Solving the Poisson equation

  

0.00  0.00  

0.975 0.975 

1.95  1.95  

2.93  2.93  

3.90  3.90  
  

0.06000.0600

0.00  0.00  

0.01500.0150

0.03000.0300

0.04500.0450

Fig. 2.3 Load (left) and resulting deflection (right) of a circular membrane.

2.4.6 Making curve plots through the domain

The best way to compare the load and the deflection is to make a curve plot
along the line x = 0. This is just a matter of defining a set of points along
the line and evaluating the finite element functions w and p at these points:

# Curve plot along x = 0 comparing p and w
import numpy as np
import matplotlib.pyplot as plt
tol = 1E-8 # avoid hitting points outside the domain
y = np.linspace(-1+tol, 1-tol, 101)
points = [(0, y_) for y_ in y] # 2D points
w_line = np.array([w(point) for point in points])
p_line = np.array([p(point) for point in points])
plt.plot(y, 100*w_line, ’r-’, y, p_line, ’b--’) # magnify w
plt.legend([’100 x deflection’, ’load’], loc=’upper left’)
plt.xlabel(’y’); plt.ylabel(’$p$ and $100u$’)
plt.savefig(’poisson_membrane/plot.pdf’)
plt.savefig(’poisson_membrane/plot.png’)

# Hold plots
interactive()
plt.show()

The complete code can be found in the file ft02_poisson_membrane.py.
The resulting curve plot appears in Figure 2.4. It is seen how the localized

input (p) is heavily damped and smoothened in the output (w). This reflects
a typical property of the Poisson equation.

2.4.7 Visualizing the solution in ParaView

ParaView is a powerful tool for visualizing scalar and vector fields, including
those computed by FEniCS.

http://www.paraview.org
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Fig. 2.4 Comparison of membrane load and deflection.

Our program writes the fields w and p to file as finite element functions.
We choose the names of these files to be membrane_deflection.pvd for w
and membrane_load.pvd for p. These files are in VTK format and their data
can be visualized in ParaView. We now give a detailed account for how to
visualize the fields w and p in ParaView.

1. Start the ParaView application.
2. Open a file with File - Open.... You will see a list of .pvd and .vtu files.

More specifically you will see membrane_deflection.pvd. Choose this file.
3. Click on Apply to the left (Properties pane) in the GUI, and ParaView

will visualize the contents of the file, here as a color image.
4. To get rid of the axis in the lower left corner of the plot area and axis

cross in the middle of the circle, find the Show Orientation Axis and Show
Center buttons to the right in the second row of buttons at the top of the
GUI. Click on these buttons to toggle axis information on/off.

5. If you want a color bar to explain the mapping between w values and
colors, go to the Color Map Editor in the right of the GUI and use the
Show/hide color legend button. Alternatively, find Coloring in the lower
left part of the GUI, and toggle the Show button.

6. The color map, by default going from blue (low values) to red (high values),
can easily be changed. Find the Coloring menu in the left part of the GUI,
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click Edit, then in the Color Map Editor double click at the left end of the
color spectrum and choose another color, say yellow, then double click at
the right and of the spectrum and choose pink, scroll down to the bottom
of the dialog and click Update. The color map now goes from yellow to
pink.

7. To save the plot to file, click on File - Export Scene..., fill in a filename,
and save. See Figure 2.5 (middle).

8. To change the background color of plots, choose Edit - Settings...,Color
tab, click on Background Color, and choose it to be, e.g., white. Then
choose Foreground Color to be something different.

9. To plot the mesh with colors reflecting the size of w, find the Representa-
tion drop down menu in the left part of the GUI, and replace Surface by
Wireframe.

10. To overlay a surface plot with a wireframe plot, load w and plot as sur-
face, then load w again and plot as wireframe. Make sure both icons
in the Pipeline Browser in the left part of the GUI are on for the
membrane_deflection.pvd files you want to display. See Figure 2.5 (left).

11. Redo the surface plot. Then we can add some contour lines. Press the
semi-sphere icon in the third row of buttons at the top of the GUI (the
so-called filters). A set of contour values can now be specified at in a dialog
box in the left part of the GUI. Remove the default contour (0.578808) and
add 0.01, 0.02, 0.03, 0.04, 0.05. Click Apply and see an overlay of white
contour lines. In the Pipeline Browser you can click on the icons to turn
a filter on or off.

12. Divide the plot window into two, say horizontally, using the top right
small icon. Choose the 3D View button. Open a new file and load
membrane_load.pvd. Click on Apply to see a plot of the load.

13. To plot a 2D scalar field as a surface, load the field, click Apply to plot
it, then select from the Filters pulldown menu the filter Warp By Scalar,
click Apply, then toggle the 2D button to 3D in the Layout #1 window
(upper row of buttons in that window). Now you can rotate the figure.
The height of the surface is very low, so go to the Properties (Warp By
Scalar1) window to the left in the GUI and give a Scale Factor of 20 and
re-click Apply to lift the surface by a factor of 20. Figure 2.5 (right) shows
the result.

A particularly useful feature of ParaView is that you can record GUI clicks
(Tools - Start/Stop Trace) and get them translated to Python code. This
allows you automate the visualization process. You can also make curve plots
along lines through the domain, etc.

For more information, we refer to The ParaView Guide [27] (free PDF
available) and to the ParaView tutorial as well as an instruction video.

http://www.paraview.org/Wiki/The_ParaView_Tutorial
https://vimeo.com/34037236
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Fig. 2.5 Default visualizations in ParaView: deflection (left, middle) and pressure load
(right).

Fig. 2.6 Use of Warp By Scalar filter to create lifted surfaces (with different vertical
scales!) in ParaView: load (left) and deflection (right).

2.4.8 Using the built-in visualization tool

This section explains some useful visualization features of the built-in visu-
alization tool in FEniCS. The plot command applies the VTK package to
visualize finite element functions in a very quick and simple way. The com-
mand is ideal for debugging, teaching, and initial scientific investigations. The
visualization can be interactive, or you can steer and automate it through
program statements. More advanced and professional visualizations are usu-
ally better created with advanced tools like Mayavi, ParaView, or VisIt.

The plot function can take additional arguments, such as a title of the
plot, or a specification of a wireframe plot (elevated mesh) instead of a colored
surface plot:

plot(mesh, title=’Finite element mesh’)
plot(w, wireframe=True, title=’Solution’)
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Axes can be turned on by the axes=True argument, while interactive=True
makes the program hang at the plot command - you have to type q in the
plot window to terminate the plot and continue execution.

The left mouse button is used to rotate the surface, while the right button
can zoom the image in and out. Point the mouse to the Help text down in the
lower left corner to get a list of all the keyboard commands that are available.

The plots created by pressing p or P are stored in filenames having
the form dolfin_plot_X.png or dolfin_plot_X.pdf, where X is an inte-
ger that is increased by one from the last plot that was made. The file
stem dolfin_plot_ can be set to something more suitable through the
hardcopy_prefix keyword argument to the plot function, for instance,
plot(f, hardcopy_prefix=’pressure’).

The ranges of the color scale can be set by the range_min and range_max
keyword arguments to plot. The values must be float objects. These argu-
ments are important to keep fixed for animations in time-dependent problems.
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Fig. 2.7 Plot of the deflection of a membrane using the built-in visualization tool.

Built-in plotting on Mac OS X and in Docker

The built-in plotting in FEniCS may not work as expected when either
running on Mac OS X or when running inside a FEniCS Docker con-
tainer. FEniCS supports plotting using the plot() command on Mac
OS X. However, the keyboard shortcuts h, p, P and so on may fail to
work. When running inside a Docker container, plotting is not sup-
ported since Docker does not interact with your windowing system. For
Docker users who need plotting, it is recommended to either work within
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a Jupyter/FEniCS notebook (command fenicsproject notebook) or
rely on Paraview or other external tools for visualization.

Exercise 2.1: Visualize a solution in a cube

Solve the problem −∇2u= f on the unit cube [0,1]× [0,1]× [0,1] with u0 =
1+x2 +2y2−4z2 on the boundary. Visualize the solution. Explore both the
built-in visualization tool and ParaView.

Solution. As hinted by the filename in this exercise, a good starting point is
the solver function in the program ft03_poisson_solver.py, which solves
the corresponding 2D problem. Only two lines in the body of solver needs
to be changed (!): mesh = .... Replace this line with

mesh = UnitCubeMesh(Nx, Ny, Nz)

and add Nz as argument to solver. We implement the new u0 function in
application_test and realize that the proper f(x,y,z) function in this new
case is 2.

u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1] - 4*x[2]*x[2]’)
f = Constant(2.0)
u = solver(f, u0, 6, 4, 3, 1)

The numerical solution is without approximation errors so we can reuse the
unit test from 2D, but it needs an extra Nz parameter.

The variation in u is only quadratic so a coarse mesh is okay for visual-
ization. Below is plot from the ParaView (left) and the built-in visualization
tool (right). The usage is as in 2D, but now one can use the mouse to rotate
the 3D cube.
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We can in ParaView add a contour filter and define contour surfaces for
u=−2,1,0,1,2,3, then add a slice filter to get a slice with colors:
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Filename: poissin_3d_func.



Chapter 3
A Gallery of finite element solvers

The goal of this chapter is to demonstrate how a range of important PDEs from
science and engineering can be quickly solved with a few lines of FEniCS code.
We start with the heat equation and continue with a nonlinear Poisson equation,
the equations for linear elasticity, the Navier–Stokes equations, and finally look at
how to solve systems of nonlinear advection–diffusion–reaction equations. These
problems illustrate how to solve time-dependent problems, nonlinear problems,
vector-valued problems, and systems of PDE. For each problem, we derive the
variational formulation and express the problem in Python in a way that closely
resembles the mathematics.

3.1 The heat equation

As a first extension of the Poisson problem from the previous chapter, we
consider the time-dependent heat equation, or the time-dependent diffusion
equation. This is the natural extension of the Poisson equation describing the
stationary distribution of heat in a body to a time-dependent problem.

We will see that by discretizing time into small time intervals and applying
standard time-stepping methods, we can solve the heat equation by solving
a sequence of variational problems, much like the one we encountered for the
Poisson equation.

3.1.1 PDE problem

Our model problem for time-dependent PDEs reads

c© 2016, Hans Petter Langtangen, Anders Logg.
Released under CC Attribution 4.0 license
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∂u

∂t
=∇2u+f in Ω, (3.1)

u= uD on ∂Ω, (3.2)
u= u0 at t= 0 . (3.3)

Here, u varies with space and time, e.g., u= u(x,y, t) if the spatial domain Ω
is two-dimensional. The source function f and the boundary values uD may
also vary with space and time. The initial condition u0 is a function of space
only.

3.1.2 Variational formulation

A straightforward approach to solving time-dependent PDEs by the finite
element method is to first discretize the time derivative by a finite difference
approximation, which yields a sequence of stationary problems, and then turn
each stationary problem into a variational formulation.

Let superscript n denote a quantity at time tn, where n is an integer count-
ing time levels. For example, un means u at time level n. A finite difference
discretization in time first consists of sampling the PDE at some time level,
say tn+1: (

∂u

∂t

)n+1
=∇2un+1 +fn+1 . (3.4)

The time-derivative can be approximated by a difference quotient. For sim-
plicity and stability reasons, we choose a simple backward difference:(

∂u

∂t

)n+1
≈ un+1−un

∆t
, (3.5)

where ∆t is the time discretization parameter. Inserting (3.5) in (3.4) yields

un+1−un

∆t
=∇2un+1 +fn+1 . (3.6)

This is our time-discrete version of the heat equation (3.1). This is a so-called
backward Euler or implicit Euler discretization. Alternatively, we may also
view this as a finite element discretization in time in the form of the first
order dG(0) method, which here is identical to the backward Euler method.

We may reorder (3.6) so that the left-hand side contains the terms with
the unknown un+1 and the right-hand side contains computed terms only.
The result is a sequence of spatial (stationary) problems for un+1 (assuming
un is known from computations at the previous time level):



3.1 The heat equation 41

u0 = u0, (3.7)
un+1−∆t∇2un+1 = un+∆tfn+1, n= 0,1,2, . . . (3.8)

Given u0, we can solve for u0, u1, u2, and so on.
An alternative to (3.8), which can be convenient in implementations, is to

collect all terms on one side of the equality sign:

un+1−∆t∇2un+1−un−∆tfn+1 = 0, n= 0,1,2, . . . (3.9)

We use a finite element method to solve (3.7) and either of the equations
(3.8) or (3.9). This requires turning the equations into weak forms. As usual,
we multiply by a test function v ∈ V̂ and integrate second-derivatives by
parts. Introducing the symbol u for un+1 (which is natural in the program),
the resulting weak form arising from formulation (3.8) can be conveniently
written in the standard notation:

a(u,v) = Ln+1(v),

where

a(u,v) =
∫
Ω

(uv+∆t∇u ·∇v) dx, (3.10)

Ln+1(v) =
∫
Ω

(
un+∆tfn+1)vdx. (3.11)

The alternative form (3.9) has an abstract formulation

F (u;v) = 0,

where

F (u;v) =
∫
Ω
uv+∆t∇u ·∇v− (un+∆tfn+1)vdx. (3.12)

In addition to the variational problem to be solved in each time step, we
also need to approximate the initial condition (3.7). This equation can also
be turned into a variational problem:

a0(u,v) = L0(v),

with

a0(u,v) =
∫
Ω
uvdx, (3.13)

L0(v) =
∫
Ω
u0vdx. (3.14)
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When solving this variational problem, u0 becomes the L2 projection of the
given initial value u0 into the finite element space. The alternative is to con-
struct u0 by just interpolating the initial value u0; that is, if u0 =

∑N
j=1U

0
j φj ,

we simply set Uj = u0(xj ,yj), where (xj ,yj) are the coordinates of node num-
ber j. We refer to these two strategies as computing the initial condition by
either projection or interpolation. Both operations are easy to compute in
FEniCS through one statement, using either the project or interpolate
function. The most common choice is project, which computes an approxi-
mation to u0, but in some applications where we want to verify the code by
reproducing exact solutions, one must use interpolate (and we use such a
test problem!).

In summary, we thus need to solve the following sequence of variational
problems to compute the finite element solution to the heat equation: find
u0 ∈ V such that a0(u0,v) =L0(v) holds for all v ∈ V̂ , and then find un+1 ∈ V
such that a(un+1,v) = Ln+1(v) for all v ∈ V̂ , or alternatively, F (un+1,v) = 0
for all v ∈ V̂ , for n= 0,1,2, . . ..

3.1.3 FEniCS implementation

Our program needs to implement the time-stepping manually, but can rely on
FEniCS to easily compute a0, L0, F , a, and L, and solve the linear systems
for the unknowns.
Test problem. Just as for the Poisson problem from the previous chapter,
we construct a test problem that makes it easy to determine if the calculations
are correct. Since we know that our first-order time-stepping scheme is exact
for linear functions, we create a test problem which has a linear variation in
time. We combine this with a quadratic variation in space. We thus take

u= 1 +x2 +αy2 +βt, (3.15)

which yields a function whose computed values at the nodes will be exact,
regardless of the size of the elements and ∆t, as long as the mesh is uniformly
partitioned. By inserting (3.15) into the heat equation (3.1), we find that the
right-hand side f must be given by f(x,y, t) = β−2−2α. The boundary value
is uD(x,y, t) = 1+x2 +αy2 +βt and the initial value is u0(x,y) = 1+x2 +αy2.
FEniCS implementation. A new programming issue is how to deal
with functions that vary in space and time, such as the boundary condi-
tion uD(x,y, t) = 1 + x2 +αy2 + βt. A natural solution is to use a FEniCS
Expression with time t as a parameter, in addition to the parameters α and
β:

alpha = 3; beta = 1.2
u_D = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

degree=2, alpha=alpha, beta=beta, t=0)
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This expression uses the components of x as independent variables, while
alpha, beta, and t are parameters. The parameters can later be updated as
in

u_D.t = t

The essential boundary conditions, along the entire boundary in this case,
are set in the usual way:

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

We shall use u for the unknown un+1 at the new time level and u_n for
un at the previous time level. The initial value of u_n can be computed by
either projection or interpolation of u0. Since we set t = 0 for the boundary
value u_D, we can use this to also specify the initial condition. We can then
do

u_n = project(u_D, V)
# or
u_n = interpolate(u_D, V)

Projecting versus interpolating the initial condition

To actually recover the exact solution (3.15) to machine precision, it is
important not to compute the discrete initial condition by projecting
u0, but by interpolating u0 so that the degrees of freedom have exact
values at t= 0 (projection results in approximate values at the nodes).

We may either define a or L according to the formulas above, or we may
just define F and ask FEniCS to figure out which terms that go into the bilin-
ear form a and which that go into the linear form L. The latter is convenient,
especially in more complicated problems, so we illustrate that construction
of a and L:

u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

Finally, we perform the time-stepping in a loop:

u = Function(V)
t = 0
for n in range(num_steps):
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# Update current time
t += dt
u_D.t = t

# Solve variational problem
solve(a == L, u, bc)

# Update previous solution
u_n.assign(u)

In the last step of the time-stepping loop, we assign the values of the
variable u (the new computed solution) to the variable u_n containing the
values at the previous time step. This must be done using the assign member
function. If we instead try to do u_n = u, we will set the u_n variable to be
the same variable as u which is not what we want. (We need two variables,
one for the values at the previous time step and one for the values at the
current time step.)

Remember to update expression objects with the current
time!
Inside the time loop, observe that u_D.t must be updated before the
solve statement to enforce computation of Dirichlet conditions at the
current time level. (The Dirichlet conditions look up the u_D object for
values.)

The time loop above does not contain any comparison of the numerical
and the exact solution, which we must include in order to verify the imple-
mentation. As in the Poisson equation example in Section 2.3, we compute
the difference between the array of nodal values for u and the array of nodal
values for the interpolated exact solution. This may be done as follows:

u_e = interpolate(u_D, V)
error = np.abs(u_e.vector().array() - u.vector().array()).max()
print(’error, t=%.2f: %.3g’ % (t, error))

The complete program code for this time-dependent case goes as follows:

from fenics import *
import numpy as np

T = 2.0 # final time
num_steps = 10 # number of time steps
dt = T / num_steps # time step size
alpha = 3 # parameter alpha
beta = 1.2 # parameter beta

# Create mesh and define function space
nx = ny = 8
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mesh = UnitSquareMesh(nx, ny)
V = FunctionSpace(mesh, ’P’, 1)

# Define boundary condition
u_D = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

degree=2, alpha=alpha, beta=beta, t=0)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

# Define initial value
u_n = interpolate(u_D, V)
#u_n = project(u_D, V)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

# Create VTK file for saving solution
vtkfile = File(’heat/solution.pvd’)
vtkfile << u_n

# Time-stepping
u = Function(V)
t = 0
for n in range(num_steps):

# Update current time
t += dt
u_D.t = t # update for bc

# Compute solution
solve(a == L, u, bc)

# Save solution to file and plot solution
vtkfile << u
plot(u)

# Compute error at vertices
u_e = interpolate(u_D, V)
error = np.abs(u_e.vector().array() - u.vector().array()).max()
print(’t = %.2f: error = %.3g’ % (t, error))

# Update previous solution
u_n.assign(u)

# Hold plot
interactive()
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The complete code can be found in the file ft04_heat.py.

3.1.4 Diffusion of a Gaussian function

The mathematical problem. Let’s solve a more interesting test problem,
namely the diffusion of a Gaussian hill. We take the initial value to be given
by

u0(x,y) = e−ax
2−ay2

on the domain [−2,2]× [2,2]. We will take a = 5. For this problem we will
use homogeneous Dirichlet boundary conditions (uD = 0).

FEniCS implementation. Which are the required changes to our previous
program? One major change is that the domain is not a unit square anymore.
We also want to use much higher resolution. The new domain can be created
easily in FEniCS using RectangleMesh:

nx = ny = 30
mesh = RectangleMesh(Point(-2, -2), Point(2, 2), nx, ny)

We also need to redefine the initial condition and boundary condition.
Both are easily changed by defining a new Expression and by setting u= 0
on the boundary. We will also save the solution to file in VTK format in each
time step:

vtkfile << u

The complete program appears below.

from fenics import *
import time

T = 2.0 # final time
num_steps = 50 # number of time steps
dt = T / num_steps # time step size

# Create mesh and define function space
nx = ny = 30
mesh = RectangleMesh(Point(-2, -2), Point(2, 2), nx, ny)
V = FunctionSpace(mesh, ’P’, 1)

# Define boundary condition
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0), boundary)

# Define initial value
u_0 = Expression(’exp(-a*pow(x[0], 2) - a*pow(x[1], 2))’,
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degree=2, a=5)
u_n = interpolate(u_0, V)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(0)

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

# Create VTK file for saving solution
vtkfile = File(’heat_gaussian/solution.pvd’)
vtkfile << u_n

# Time-stepping
u = Function(V)
t = 0
for n in range(num_steps):

# Update current time
t += dt

# Compute solution
solve(a == L, u, bc)

# Save to file and plot solution
vtkfile << u
plot(u)

# Update previous solution
u_n.assign(u)

# Hold plot
interactive()

The complete code can be found in the file ft05_heat_gaussian.py.

Visualization in ParaView. To visualize the diffusion of the Gaussian hill,
start ParaView, choose File - Open, open the file heat_gaussian/solution.pvd,
click the green Apply button on the left to see the initial condition being
plotted. Choose View - Animation View. Click on the play button or
(better) the next frame button in the row of buttons at the top of the GUI
to see the evolution of the scalar field you have just computed. Choose File -
Save Animation... to save the animation to the AVI or OGG video format.

Once the animation has been saved to file, you can play the animation
offline using a player such as mplayer or VLC, or upload your animation to
YouTube. Below is a sequence of snapshots of the solution (first three time
steps).
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3.2 A nonlinear Poisson equation

We shall now address how to solve nonlinear PDEs. We will see that nonlinear
problems can be solved just as easily as linear problems in FEniCS, by sim-
ply defining a nonlinear variational problem and calling the solve function.
When doing so, we will encounter a subtle difference in how the variational
problem is defined.

3.2.1 PDE problem

As a sample PDE for the implementation of nonlinear problems, we take the
following nonlinear Poisson equation:

−∇· (q(u)∇u) = f, (3.16)

in Ω, with u = uD on the boundary ∂Ω. The coefficient q(u) makes the
equation nonlinear (unless q(u) is constant in u).

3.2.2 Variational formulation

As usual, we multiply our PDE by a test function v ∈ V̂ , integrate over the
domain, and integrate the second-order derivatives by parts. The bound-
ary integral arising from integration by parts vanishes wherever we employ
Dirichlet conditions. The resulting variational formulation of our model prob-
lem becomes: find u ∈ V such that

F (u;v) = 0 ∀v ∈ V̂ , (3.17)
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where

F (u;v) =
∫
Ω
q(u)∇u ·∇v−fvdx, (3.18)

and

V = {v ∈H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈H1(Ω) : v = 0 on ∂Ω} .

The discrete problem arises as usual by restricting V and V̂ to a pair of
discrete spaces. As before, we omit any subscript on the discrete spaces and
discrete solution. The discrete nonlinear problem is then written as: Find
u ∈ V such that

F (u;v) = 0 ∀v ∈ V̂ , (3.19)

with u=
∑N
j=1Ujφj . Since F is nonlinear in u, the variational statement gives

rise to a system of nonlinear algebraic equations in the unknowns U1, . . . ,UN .

3.2.3 FEniCS implementation

Test problem. To solve a test problem, we need to choose the right-hand
side f , the coefficient q(u) and the boundary value uD . Previously, we have
worked with manufactured solutions that can be reproduced without approx-
imation errors. This is more difficult in nonlinear problems, and the algebra
is more tedious. However, we may utilize SymPy for symbolic computing and
integrate such computations in the FEniCS solver. This allows us to eas-
ily experiment with different manufactured solutions. The forthcoming code
with SymPy requires some basic familiarity with this package. In particular,
we will use the SymPy functions diff for symbolic differentiation and ccode
for C/C++ code generation.

We try out a two-dimensional manufactured solution that is linear in the
unknowns:

# Warning: from fenics import * will import both ‘sym‘ and
# ‘q‘ from FEniCS. We therefore import FEniCS first and then
# overwrite these objects.
from fenics import *

def q(u):
"""Nonlinear coefficient in the PDE."""
return 1 + u**2

# Use SymPy to compute f given manufactured solution u
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import sympy as sym
x, y = sym.symbols(’x[0], x[1]’)
u = 1 + x + 2*y
f = - sym.diff(q(u)*sym.diff(u, x), x) - \

sym.diff(q(u)*sym.diff(u, y), y)
f = sym.simplify(f)
u_code = sym.printing.ccode(u)
f_code = sym.printing.ccode(f)
print(’u =’, u_code)
print(’f =’, f_code)

Define symbolic coordinates as required in Expression objects

Note that we would normally write x, y = sym.symbols(’x, y’), but
if we want the resulting expressions to have valid syntax for FEniCS
Expression objects, we must use x[0] and x[1]. This is easily accom-
plished with sympy by defining the names of x and y as x[0] and x[1]:
x, y = sym.symbols(’x[0], x[1]’).

Turning the expressions for u and f into C or C++ syntax for FEniCS
Expression objects needs two steps. First, we ask for the C code of the
expressions:

u_code = sym.printing.ccode(u)
f_code = sym.printing.ccode(f)

Sometimes, we need some editing of the result to match the required syntax
of Expression objects, but not in this case. (The primary example is that
M_PI for π in C/C++ must be replaced by pi for Expression objects.) In
the present case, the output of c_code and f_code is

x[0] + 2*x[1] + 1
-10*x[0] - 20*x[1] - 10

After having defined the mesh, the function space, and the boundary, we
define the boundary value u_D as

u_D = Expression(u_code)

Similarly, we define the right-hand side function as

f = Expression(f_code)

Name clash between FEniCS and program variables

In a program like the one above, strange errors may occur due to name
clashes. If you define sym and q prior to doing from fenics import *,
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the latter statement will also import variables with the names sym and
q, overwriting the objects you have previously defined! This may lead to
strange errors. The safest solution is to do import fenics as fe and
then prefix all FEniCS object names by fe. The next best solution is
to do from fenics import * first and then define your own variables
that overwrite those imported from fenics. This is acceptable if we do
not need sym and q from fenics.

FEniCS implementation. A working solver for the nonlinear Poisson equa-
tion is as easy to implement as a solver for the corresponding linear problem.
All we need to do is to state the formula for F and call solve(F == 0, u,
bc) instead of solve(a == L, u, bc) as we did in the linear case. Here is
a minimalistic code:

from fenics import *

def q(u):
return 1 + u**2

mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, ’P’, 1)
u_D = Expression(...)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

u = Function(V)
v = TestFunction(V)
f = Expression(...)
F = q(u)*dot(grad(u), grad(v))*dx - f*v*dx

solve(F == 0, u, bc)

The complete code can be found in the file ft06_poisson_nonlinear.py.
The major difference from a linear problem is that the unknown function u

in the variational form in the nonlinear case must be defined as a Function,
not as a TrialFunction. In some sense this is a simplification from the linear
case where we must define u first as a TrialFunction and then as a Function.

The solve function takes the nonlinear equations, derives symbolically the
Jacobian matrix, and runs a Newton method to compute the solution.

Running the code gives output that tells how the Newton iteration pro-
gresses. With 2 · (8×8) cells we reach convergence in 8 iterations with a tol-
erance of 10−9, and the error in the numerical solution is about 10−16. These
results bring evidence for a correct implementation. Thinking in terms of fi-
nite differences on a uniform mesh, P1 elements mimic standard second-order
differences, which compute the derivative of a linear or quadratic function ex-
actly. Here, ∇u is a constant vector, but then multiplied by (1 +u2), which
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is a second-order polynomial in x and y, which the divergence “difference
operator” should compute exactly. We can therefore, even with P1 elements,
expect the manufactured u to be reproduced by the numerical method. With
a nonlinearity like 1 +u4, this will not be the case, and we would need to
verify convergence rates instead.

The current example shows how easy it is to solve a nonlinear problem
in FEniCS. However, experts on the numerical solution of nonlinear PDEs
know very well that automated procedures may fail in nonlinear problems,
and that it is often necessary to have much better manual control of the
solution process than what we have in the current case. Therefore, we return
to this problem in Chapter 3 in [21] and show how we can implement our
own solution algorithms for nonlinear equations and also how we can steer the
parameters in the automated Newton method used above. You will then see
how easy it is to implement tailored solution strategies for nonlinear problems
in FEniCS.

3.3 The equations of linear elasticity

Analysis of structures is one of the major activities of modern engineering,
thus making the PDEs for deformation of elastic bodies likely the most pop-
ular PDE model in the world. It takes just one page of code to solve the
equations of 2D or 3D elasticity in FEniCS, and the details follow below.

3.3.1 PDE problem

The equations governing small elastic deformations of a body Ω can be writ-
ten as

−∇·σ = f in Ω, (3.20)
σ = λtr(ε)I) + 2µε, (3.21)

ε= 1
2

(
∇u+ (∇u)>

)
, (3.22)

where σ is the stress tensor, f is the body force per unit volume, λ and µ are
Lamé’s elasticity parameters for the material in Ω, I is the identity tensor, tr
is the trace operator on a tensor, ε is the strain tensor (symmetric gradient),
and u is the displacement vector field. We have here assumed isotropic elastic
conditions.

We combine (3.21) and (3.22) to obtain
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σ = λ(∇·u)I+µ(∇u+ (∇u)>) . (3.23)

Note that (3.20)–(3.22) can easily be transformed to a single vector PDE for
u, which is the governing PDE for the unknown u (Navier’s equation). In the
derivation of the variational formulation, however, it is convenient to keep
the splitting of the equations as above.

3.3.2 Variational formulation

The variational formulation of (3.20)–(3.22) consists of forming the inner
product of (3.20) and a vector test function v ∈ V̂ , where V̂ is a vector-valued
test function space, and integrating over the domain Ω:

−
∫
Ω

(∇·σ) ·vdx=
∫
Ω
f ·vdx.

Since ∇·σ contains second-order derivatives of the primary unknown u, we
integrate this term by parts:

−
∫
Ω

(∇·σ) ·vdx=
∫
Ω
σ :∇vdx−

∫
∂Ω

(σ ·n) ·vds,

where the colon operator is the inner product between tensors (summed pair-
wise product of all elements), and n is the outward unit normal at the bound-
ary. The quantity σ ·n is known as the traction or stress vector at the bound-
ary, and is often prescribed as a boundary condition. We assume that it is
prescribed at a part ∂ΩT of the boundary as σ ·n= T . On the remaining part
of the boundary, we assume that the value of the displacement is given as a
Dirichlet condition. We then have∫

Ω
σ :∇vdx=

∫
Ω
f ·vdx+

∫
∂ΩT

T ·vds.

Inserting the expression (3.23) for σ gives the variational form with u as
unknown. Note that the boundary integral on the remaining part ∂Ω \ΩT
vanishes due to the Dirichlet condition (v = 0).

We can now summarize the variational formulation as: find u ∈ V such
that

a(u,v) = L(v) ∀v ∈ V̂ , (3.24)

where
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a(u,v) =
∫
Ω
σ(u) :∇vdx, (3.25)

σ(u) = λ(∇·u)I+µ(∇u+ (∇u)>), (3.26)

L(v) =
∫
Ω
f ·vdx+

∫
∂ΩT

T ·vds. (3.27)

One can show that the inner product of a symmetric tensor A and a anti-
symmetric tensor B vanishes. If we express ∇v as a sum of its symmetric and
anti-symmetric parts, only the symmetric part will survive in the product
σ :∇v since σ is a symmetric tensor. Thus replacing ∇u by the symmetric
gradient ε(u) gives rise to the slightly different variational form

a(u,v) =
∫
Ω
σ(u) : ε(v)dx, (3.28)

where ε(v) is the symmetric part of ∇v:

ε(v) = 1
2

(
∇v+ (∇v)>

)
.

The formulation (3.28) is what naturally arises from minimization of elastic
potential energy and is a more popular formulation than (3.25).

3.3.3 FEniCS implementation

Test problem. As a test example, we may look at a clamped beam deformed
under its own weight. Then f = (0,0,−%g) is the body force per unit volume
with % the density of the beam and g the acceleration of gravity. The beam
is box-shaped with length L and has a square cross section of width W . We
set u= uD = (0,0,0) at the clamped end, x= 0. The rest of the boundary is
traction free; that is, we set T = 0.

The code. We first list the code and then comment upon the new construc-
tions compared to the Poisson equation case.

from fenics import *

# Scaled variables
L = 1; W = 0.2
mu = 1
rho = 1
delta = W/L
gamma = 0.4*delta**2
beta = 1.25
lambda_ = beta
g = gamma

# Create mesh and define function space
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mesh = BoxMesh(Point(0, 0, 0), Point(L, W, W), 10, 3, 3)
V = VectorFunctionSpace(mesh, ’P’, 1)

# Define boundary condition
tol = 1E-14

def clamped_boundary(x, on_boundary):
return on_boundary and x[0] < tol

bc = DirichletBC(V, Constant((0, 0, 0)), clamped_boundary)

# Define strain and stress

def epsilon(u):
return 0.5*(nabla_grad(u) + nabla_grad(u).T)
#return sym(nabla_grad(u))

def sigma(u):
return lambda_*nabla_div(u)*Identity(d) + 2*mu*epsilon(u)

# Define variational problem
u = TrialFunction(V)
d = u.geometric_dimension() # no of space dim
v = TestFunction(V)
f = Constant((0, 0, rho*g))
T = Constant((0, 0, 0))
a = inner(sigma(u), epsilon(v))*dx
L = dot(f, v)*dx + dot(T, v)*ds

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Plot solution
plot(u, title=’Displacement’, mode=’displacement’)

# Plot stress
s = sigma(u) - (1./3)*tr(sigma(u))*Identity(d) # deviatoric stress
von_Mises = sqrt(3./2*inner(s, s))
V = FunctionSpace(mesh, ’P’, 1)
von_Mises = project(von_Mises, V)
plot(von_Mises, title=’Stress intensity’)

# Compute magnitude of displacement
u_magnitude = sqrt(dot(u, u))
u_magnitude = project(u_magnitude, V)
plot(u_magnitude, ’Displacement magnitude’)
print(’min/max u:’, u_magnitude.vector().array().min(),

u_magnitude.vector().array().max())

The complete code can be found in the file ft07_elasticity.py.
We comment below on some of the key features of this example that we

have not seen in previous examples.
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Vector function spaces. The primary unknown is now a vector field u and
not a scalar field, so we need to work with a vector function space:

V = VectorFunctionSpace(mesh, ’P’, 1)

With u = Function(V) we get u as a vector-valued finite element function.

Constant vectors. In the boundary condition u= 0, we must set a vector
value to zero, not just a scalar, and a constant zero vector is specified as
Constant((0, 0, 0)) in FEniCS. The corresponding 2D code would use
Constant((0, 0)). Later in the code, we also need f as a vector and specify
it as Constant((0, 0, rho*g)).

nabla_grad. The gradient and divergence operators now have a prefix
nabla_. This is strictly not necessary in the present problem, but recom-
mended in general for vector PDEs arising from continuum mechanics, if you
interpret ∇ as a vector in the PDE notation; see the box about nabla_grad
in Section 3.4.2.

Stress computation. As soon as u is computed, we can compute various
stress measures, here the von Mises stress defined as σM =

√
3
2s : s where s

is the deviatoric stress tensor

s= σ− 1
3tr(σ)I .

There is a one to one mapping between these formulas and the FEniCS code:

s = sigma(u) - (1./3)*tr(sigma(u))*Identity(d)
von_Mises = sqrt(3./2*inner(s, s))

The von_Mises variable is now an expression that must be projected to a
finite element space before we can visualize it.

Scaling. Before doing simulations for a specific problem, it is often ad-
vantageous to scale the problem as it reduces the need for setting physical
parameters, and one obtains dimensionsless numbers that reflect the compe-
tition of parameters and physical effects. We develop the code for the original
model with dimensions, and run the scaled problem by tweaking parameters
appropriately. Scaling reduces the number of active parameters from 6 to 2
in the present application.

In Navier’s equation for u, arising from inserting (3.21) and (3.22) in (3.20),

∇· (λ∇·u) +µ∇2u= f,

we insert coordinates made dimensionless by L, and ū= u/U , which results
in the dimensionless governing equation

β∇̄ · (∇̄ · ū) + ∇̄2ū= f̄ , f̄ = (0,0,γ),

where β = λ/µ is a dimensionless elasticity parameter and
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γ = %gL2

µU

is also a dimensionless variable reflecting the ratio of the load %g and the
shear stress term µ∇2u∼ µU/L2 in the PDE.

Sometimes, one will argue to chose U to make γ unity (U = %gL2/µ). How-
ever, in elasticity, this leads us to displacements of the size of the geometry,
which makes plots look very strange. We therefore want the characteristic
displacement to be a small fraction of the characteristic length of the geome-
try. This can be achieved by choosing U equal to the maximum deflection of
a clamped beam, for which there actually exists an formula: U = 3

2%gL
2δ2/E,

where δ = L/W is a parameter reflecting how slender the beam is, and E is
the modulus of elasticity. Thus, the dimensionless parameter δ is very impor-
tant in the problem (as expected, since δ� 1 is what gives beam theory!).
Taking E to be of the same order as µ, which is the case for many materials,
we realize that γ ∼ δ−2 is an appropriate choice. Experimenting with the code
to find a displacement that “looks right” in plots of the deformed geometry,
points to γ = 0.4δ−2 as our final choice of γ.

The simulation code implements the problem with dimensions and physical
parameters λ, µ, %, g, L, and W . However, we can easily reuse this code for
a scaled problem: just set µ= %= L= 1, W as W/L (δ−1), g = γ, and λ= β.
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Fig. 3.1 Gravity-induced deformation of a clamped beam: deflection (left) and stress
intensity seen from below (right).

3.4 The Navier–Stokes equations

As our next example in this chapter, we will solve the incompressible Navier–
Stokes equations. This problem combines many of the challenges from our pre-
viously studied problems: time-dependence, nonlinearity, and vector-valued
variables. We shall touch on a number of FEniCS topics, many of them quite
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advanced. But you will see that even a relatively complex algorithm such as
a second-order splitting method for the incompressible Navier–Stokes equa-
tions, can be implemented with relative ease in FEniCS.

3.4.1 PDE problem

The incompressible Navier–Stokes equations are a system of equations for
the velocity u and pressure p in an incompressible fluid:

%

(
∂u

∂t
+u ·∇u

)
=∇·σ(u,p) +f, (3.29)

∇·u= 0. (3.30)

The right-hand side f is a given force per unit volume and just as for the
equations of linear elasticity, σ(u,p) denotes the stress tensor which for a
Newtonian fluid is given by

σ(u,p) = 2µε(u)−pI, (3.31)

where ε(u) is the strain-rate tensor

ε(u) = 1
2

(
∇u+ (∇u)T

)
.

The parameter µ is the dynamic viscosity. Note that the momentum equation
(3.29) is very similar to the elasticity equation (3.20). The difference is in the
two additional terms %(∂u/∂t+u ·∇u) and the different expression for the
stress tensor. The two extra terms express the acceleration balanced by the
force F =∇·σ+f per unit volume in Newton’s second law of motion.

3.4.2 Variational formulation

The Navier–Stokes equations are different from the time-dependent heat
equation in that we need to solve a system of equations and this system
is of a special type. If we apply the same technique as for the heat equa-
tion; that is, replacing the time derivative with a simple difference quotient,
we obtain a nonlinear system of equations. This in itself is not a problem
for FEniCS as we saw in Section 3.2, but the system has a so-called saddle
point structure and requires special techniques (preconditioners and iterative
methods) to be solved efficiently.

Instead, we will apply a simpler and often very efficient approach, known
as a splitting method. The idea is to consider the two equations (3.29) and
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(3.30) separately. There exist many splitting strategies for the incompress-
ible Navier–Stokes equations. One of the oldest is the method proposed by
Chorin [6] and Temam [28], often referred to as Chorin’s method. We will
use a modified version of Chorin’s method, the so-called incremental pres-
sure correction scheme (IPCS) due to [13] which gives improved accuracy
compared to the original scheme at little extra cost.

The IPCS scheme involves three steps. First, we compute a tentative ve-
locity u? by advancing the momentum equation (3.29) by a midpoint finite
difference scheme in time, but using the pressure pn from the previous time
interval. We will also linearize the nonlinear convective term by using the
known velocity un from the previous time step: un · ∇un. The variational
problem for this first step is:

〈%(u?−un)/∆t,v〉+ 〈%un ·∇un,v〉+

〈σ(un+ 1
2 ,pn), ε(v)〉+ 〈pnn,v〉∂Ω−

〈µ∇un+ 1
2 ·n,v〉∂Ω = 〈fn+1,v〉. (3.32)

This notation, suitable for problems with many terms in the variational for-
mulations, requires some explanation. First, we use the short-hand notation

〈v,w〉=
∫
Ω
vwdx, 〈v,w〉∂Ω =

∫
∂Ω

vwds.

This allows us to express the variational problem in a more compact way.
Second, we use the notation un+ 1

2 . This notation means the value of u at the
midpoint of the interval, usually approximated by an arithmetic mean

un+ 1
2 ≈ (un+un+1)/2.

Third, we notice that the variational problem (3.32) arises from the integra-
tion by parts of the term 〈−∇ · σ,v〉. Just as for the elasticity problem in
Section 3.3, we obtain

〈−∇·σ,v〉= 〈σ,ε(v)〉−〈T,v〉∂Ω ,

where T = σ ·n is the boundary traction. If we solve a problem with a free
boundary, we can take T = 0 on the boundary. However, if we compute the
flow through a channel or a pipe and want to model flow that continues into
an “imaginary channel” at the outflow, we need to treat this term with some
care. The assumption we then make is that the derivative of the velocity
in the direction of the channel is zero at the outflow, corresponding to a
flow that is “fully developed” or doesn’t change significantly downstream of
the outflow. Doing so, the remaining boundary term at the outflow becomes
pn−µ∇u ·n, which is the term appearing in the variational problem (3.32).
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grad(u) vs. nabla_grad(u)

For scalar functions ∇u has a clear meaning as the vector

∇u=
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
.

However, if u is vector-valued, the meaning is less clear. Some sources
define∇u as the matrix with elements ∂uj/∂xi, while other sources pre-
fer ∂ui/∂xj . In FEniCS, grad(u) is defined as the matrix with elements
∂ui/∂xj , which is the natural definition of ∇u if we think of this as the
gradient or derivative of u. This way, the matrix ∇u can be applied to
a differential dx to give an increment du = ∇u dx. Since the alterna-
tive interpretation of ∇u as the matrix with elements ∂uj/∂xi is very
common, in particular in continuum mechanics, FEniCS provides the
operator nabla_grad for this purpose. For the Navier–Stokes equations,
it is important to consider the term u ·∇u which should be interpreted
as the vector w with elements wi =

∑
j

(
uj

∂
∂xj

)
ui =

∑
j uj

∂ui
∂xj

. This
term can be implemented in FEniCS either as grad(u)*u, since this
is expression becomes

∑
j ∂ui/∂xjuj , or as dot(u, nabla_grad(u))

since this expression becomes
∑
iui∂uj/∂xi. We will use the notation

dot(u, nabla_grad(u)) below since it corresponds more closely to the
standard notation u ·∇u.

To be more precise, there are three different notations used for PDEs
involving gradient, divergence, and curl operators. One employs gradu,
divu, and curlu operators. Another employs ∇u as a synonym for
gradu, ∇·u means divu, and ∇×u is the name for curlu. The third op-
erates with ∇u, ∇·u, and ∇×u in which ∇ is a vector and, e.g., ∇u is a
dyadic expression: (∇u)i,j = ∂uj/∂xi = (gradu)>. The latter notation,
with ∇ as a vector operator, is often handy when deriving equations in
continuum mechanics, and if this interpretation of ∇ is the foundation
of your PDE, you must use nabla_grad, nabla_div, and nabla_curl
in FEniCS code as these operators are compatible with dyadic compu-
tations. From the Navier–Stokes equations we can easily see what ∇
means: if the convective term has the form u · ∇u (actually meaning
(u ·∇)u), ∇ is a vector operator, reading dot(u, nabla_grad(u)) in
FEniCS, but if we see ∇u ·u or (gradu) ·u, the corresponding FEniCS
expression is dot(grad(u), u).

We now move on to the second step in our splitting scheme for the in-
compressible Navier–Stokes equations. In the first step, we computed the
tentative velocity u? based on the pressure from the previous time step. We
may now use the computed tentative velocity to compute the new pressure
pn:
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〈∇pn+1,∇q〉= 〈∇pn,∇q〉−∆t−1〈∇ ·u?, q〉. (3.33)

Note here that q is a scalar-valued test function from the pressure space,
whereas the test function v in (3.32) is a vector-valued test function from the
velocity space.

One way to think about this step is to subtract the Navier–Stokes momen-
tum equation (3.29) expressed in terms of the tentative velocity u? and the
pressure pn from the momentum equation expressed in terms of the velocity
un and pressure pn. This results in the equation

(un−u?)/∆t+∇pn+1−∇pn = 0. (3.34)

Taking the divergence and requiring that ∇ · un = 0 by the Navier–Stokes
continuity equation (3.30), we obtain the equation −∇ ·u?/∆t+∇2pn+1−
∇2pn = 0, which is a Poisson problem for the pressure pn+1 resulting in the
variational problem (3.33).

Finally, we compute the corrected velocity un+1 from the equation (3.34).
Multiplying this equation by a test function v, we obtain

〈un+1,v〉= 〈u?,v〉−∆t〈∇(pn+1−pn),v〉. (3.35)

In summary, we may thus solve the incompressible Navier–Stokes equa-
tions efficiently by solving a sequence of three linear variational problems in
each time step.

3.4.3 FEniCS implementation

Test problem 1: Channel flow. As a first test problem, we compute the
flow between two infinite plates, so-called channel or Poiseuille flow, since
this problem has a known analytical solution. Let H be the distance between
the plates and L the length of the channel. There are no body forces.

We may scale the problem first to get rid of seemingly independent physical
parameters. The physics of this problem is governed by viscous effects only,
in the direction perpendicular to the flow, so a time scale should be based on
diffusion accross the channel: tc =H2/ν. We let U , some characteristic inflow
velocity, be the velocity scale and H the spatial scale. The pressure scale is
taken as the characteristic shear stress, µU/H, since this is a primary example
of shear flow. Inserting x̄= x/H, ȳ = y/H, z̄ = z/H, ū= u/U , p̄=Hp/(µU),
and t̄=H2/ν in the equations results in the scaled Navier–Stokes equations
(dropping bars after the scaling):
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∂u

∂t
+ Reu ·∇u=−∇p+∇2u,

∇·u= 0 .

Here, Re = %UH/µ is the Reynolds number. Because of the time and pressure
scale, which are different from convection-dominated fluid flow, the Reynolds
number is associated with the convective term and not the viscosity term.
Note that the last term in the first equation is zero, but we included this
term as it arises naturally from the original ∇·σ term.

The exact solution is derived by assuming u = (ux(x,y,z),0,0), with the
x axis pointing along the channel. Since ∇ ·u = 0, u cannot depend on x.
The physics of channel flow is also two-dimensional so we can omit the z
coordinate (more precisely: ∂/∂z = 0). Inserting u= (ux,0,0) in the (scaled)
governing equations gives u′′x(y) = ∂p/∂x. Differentiating this equation with
respect to x shows that ∂2p/∂2x= 0 so ∂p/∂x is a constant, here called −β.
This is the driving force of the flow and can be specified as a known parameter
in the problem. Integrating u′′x(y) =−β over the width of the channel, [0,1],
and requiring u = 0 at the channel walls, results in ux = 1

2βy(1− y). The
characteristic inlet flow in the channel, U , can be taken as the maximum
inflow at y = 1/2, implying that β = 8. The length of the channel, L/H
in the scaled model, has no impact on the result, so for simplicity we just
compute on the unit square. Mathematically, the pressure must be prescribed
at a point, but since p does not depend on y, we can set p to a known value,
e.g. zero, along the outlet boundary x= 1. The result is p(x) = 8(1−x) and
ux = 4y(1−y).

The boundary conditions can be set as p= 1 at x= 0, p= 0 at x= 1 and
u= 0 on the walls y = 0,1. This defines the pressure drop and should result
in unit maximum velocity at the inlet and outlet and a parabolic velocity
profile without further specifications. Note that it is only meaningful to solve
the Navier–Stokes equations in 2D or 3D geometries, although the underlying
mathematical problem collapses to two 1D problems, one for ux(y) and one
for p(x).

The scaled model is not so easy to simulate using a standard Navier–Stokes
solver with dimensions. However, one can argue that the convection term is
zero, so the Re coefficient in front of this term in the scaled PDEs is not
important and can be set to unity. In that case, setting % = µ = 1 in the
original Navier–Stokes equations resembles the scaled model.

For a specific engineering problem one wants to simulate a specific fluid
and set corresponding parameters. A general solver is most naturally imple-
mented with dimensions and the original physical parameters. However, the
scaled problem simplifies numerical simulations a lot. First of all, it tells that
all fluids flow in the same way: it does not matter whether we have oil, gas,
or water flowing between two plates, and it does not matter how fast the flow
is (up to some criticial value of the Reynolds number where the flow becomes
unstable and goes over to a complicated turbulent flow of totally different na-
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ture). This means that one simulation is enough to cover all types of channel
flows! In other applications scaling tells us that it might be necessary to set
just the fraction of some parameters (dimensionless numbers) rather than the
parameters themselves. This simplifies exploring the input parameter space
which is often the purpose of simulation. Frequently, the scaled problem is
run by setting some of the input parameters with dimension to fixed values
(often unity).

FEniCS implementation. Our previous examples have all started out with
the creation of a mesh and then the definition of a FunctionSpace on the
mesh. For the splitting scheme we will use to solve the Navier–Stokes equa-
tions we need to define two function spaces, one for the velocity and one for
the pressure:

V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)

The first space V is a vector-valued function space for the velocity and the
second space Q is a scalar-valued function space for the pressure. We use
piecewise quadratic elements for the velocity and piecewise linear elements
for the pressure. When creating a VectorFunctionSpace in FEniCS, the
value-dimension (the length of the vectors) will be set equal to the geometric
dimension of the finite element mesh. One can easily create vector-valued
function spaces with other dimensions in FEniCS by adding the keyword
parameter dim:

V = VectorFunctionSpace(mesh, ’P’, 2, dim=10)

Stable finite element spaces for the Navier–Stokes equations

It is well-known that certain finite element spaces are not stable for
the Navier–Stokes equations, or even for the simpler Stokes equations.
The prime example of an unstable pair of finite element spaces is to
use first degree continuous piecewise polynomials for both the velocity
and the pressure. Using an unstable pair of spaces typically results in
a solution with spurious (unwanted, non-physical) oscillations in the
pressure solution. The simple remedy is to use piecewise continuous
piecewise quadratic elements for the velocity and continuous piecewise
linear elements for the pressure. Together, these elements form the so-
called Taylor-Hood element. Spurious oscillations may occur also for
splitting methods if an unstable element pair is used.

Since we have two different function spaces, we need to create two sets of
trial and test functions:

u = TrialFunction(V)
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v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

As we have seen in previous examples, boundaries may be defined in FEn-
iCS by defining Python functions that return True or False depending on
whether a point should be considered part of the boundary, for example

def boundary(x, on_boundary):
return near(x[0], 0)

This function defines the boundary to be all points with x-coordinate equal
to (near) zero. The near function comes from FEniCS and performs a
test with tolerance: abs(x[0]-0) < 3E-16 so we do not run into round-
ing troubles. Alternatively, we may give the boundary definition as a string
of C++ code, much like we have previously defined expressions such as u0
= Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’). The above definition of
the boundary in terms of a Python function may thus be replaced by a simple
C++ string:

boundary = ’near(x[0], 0)’

This has the advantage of moving the computation of which nodes belong
to the boundary from Python to C++, which improves the efficiency of the
program.

For the current example, we will set three different boundary conditions.
First, we will set u= 0 at the walls of the channel; that is, at y = 0 and y = 1.
Second, we will set p= 1 at the inflow (x= 0) and, finally, p= 0 at the outflow
(x = 1). This will result in a pressure gradient that will accelerate the flow
from an initial stationary state. These boundary conditions may be defined
as follows:

# Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 1)’
walls = ’near(x[1], 0) || near(x[1], 1)’

# Define boundary conditions
bcu_noslip = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

At the end, we collect the boundary conditions for the velocity and pressure
in Python lists so we can easily access them in the following computation.

We now move on to the definition of the variational forms. There are three
variational problems to be defined, one for each step in the IPCS scheme. Let
us look at the definition of the first variational problem. We start with some
constants:
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U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

The next step is to set up the variational form for the first step (3.32) in
the solution process. Since the variational problem contains a mix of known
and unknown quantities we have introduced a naming convention to be used
throughout the book: u is the unknown (mathematically un+1) as a trial
function in the variational form, u_ is the most recently computed approxi-
mation (un+1 available as a finite element FEniCS Function object), u_n is
un, and the same convention goes for p, p_ (pn+1), and p_n (pn).

def epsilon(u):
return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx + \

rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- rho*dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Note that we, in the definition of the variational problem, take advantage of
the Python programming language to define our own operators sigma and
epsilon. Using Python this way makes it easy to extend the mathematical
language of FEniCS with special operators and constitutive laws.

Also note that FEniCS can sort out the bilinear form a(u,v) and linear
form L(v) forms by the lhs and rhs functions. This is particularly convenient
in longer and more complicated variational forms.

The splitting scheme requires the solution of a sequence of three variational
problems in each time step. We have previously used the built-in FEniCS
function solve to solve variational problems. Under the hood, when a user
calls solve(a == L, u, bc), FEniCS will perform the following steps:

A = assemble(A)
b = assemble(L)
bc.apply(A, b)
solve(A, u.vector(), b)

In the last step, FEniCS uses the overloaded solve function to solve the
linear system AU = b where U is the vector of degrees of freedom for the
function u(x) =

∑
j=1Ujφj(x).
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In our implementation of the splitting scheme, we will make use of these
low-level commands to first assemble and then call solve. This has the ad-
vantage that we may control when we assemble and when we solve the linear
system. In particular, since the matrices for the three variational problems
are all time-independent, it makes sense to assemble them once and for all
outside of the time-stepping loop:

A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

Within the time-stepping loop, we may then assemble only the right-hand
side vectors, apply boundary conditions, and call the solve function as here
for the first of the three steps:

# Time-stepping
t = 0
for n in range(num_steps):

# Update current time
t += dt

# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1)

Notice the Python list comprehension [bc.apply(b1) for bc in bcu] which
iterates over all bc in the list bcu. This is a convenient and compact way to
construct a loop that applies all boundary conditions in a single line. Also,
the code works if we add more Dirichlet boundary conditions in the future.

Finally, let us look at an important detail in how we use parameters such
as the time step dt in the definition of our variational problems. Since we
might want to change these later, for example if we want to experiment with
smaller or larger time steps, we wrap these using a FEniCS Constant:

k = Constant(dt)

The assembly of matrices and vectors in FEniCS is based on code generation.
This means that whenever we change a variational problem, FEniCS will have
to generate new code, which may take a little time. New code will also be
generated when a float value for the time step is changed. By wrapping this
parameter using Constant, FEniCS will treat the parameter as a generic
constant and not a specific numerical value, which prevents repeated code
generation. In the case of the time step, we choose a new name k instead of
dt for the Constant since we also want to use the variable dt as a Python
float as part of the time-stepping.

The complete code for simulating 2D channel flow with FEniCS looks as
follows:

from fenics import *
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import numpy as np

T = 10.0 # final time
num_steps = 500 # number of time steps
dt = T / num_steps # time step size
mu = 1 # kinematic viscosity
rho = 1 # density

# Create mesh and define function spaces
mesh = UnitSquareMesh(16, 16)
V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)

# Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 1)’
walls = ’near(x[1], 0) || near(x[1], 1)’

# Define boundary conditions
bcu_noslip = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

# Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

# Define strain-rate tensor
def epsilon(u):

return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
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F1 = rho*dot((u - u_n) / k, v)*dx + \
rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \

+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- rho*dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Time-stepping
t = 0
for n in range(num_steps):

# Update current time
t += dt

# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1)

# Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p_.vector(), b2)

# Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u_.vector(), b3)

# Plot solution
plot(u_)

# Compute error
u_e = Expression((’4*x[1]*(1.0 - x[1])’, ’0’), degree=2)
u_e = interpolate(u_e, V)
error = np.abs(u_e.vector().array() - u_.vector().array()).max()
print(’t = %.2f: error = %.3g’ % (t, error))
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print(’max u:’, u_.vector().array().max())

# Update previous solution
u_n.assign(u_)
p_n.assign(p_)

# Hold plot
interactive()

The complete code can be found in the file ft08_navier_stokes_channel.py.

Verification. We compute the error at the nodes as we have done before to
verify that our implementation is correct. Our Navier–Stokes solver computes
the solution to the time-dependent incompressible Navier–Stokes equations,
starting from the initial condition u= (0,0). We have not specified the initial
condition explicitly in our solver which means that FEniCS will initialize all
variables, in particular the previous and current velocities u_n and u_, to
zero. Since the exact solution is quadratic, we expect the solution to be exact
to within machine precision at the nodes at infinite time. For our implemen-
tation, the error quickly approaches zero and is approximately 10−6 at time
T = 10.

Fig. 3.2 Plot of the velocity profile at the final time for the Navier–Stokes Poiseuille
flow example.

Exercise 3.1: Simulate channel flow in a 3D geometry

FEniCS solvers typically have the number of space dimensions parameterized,
so a 1D, 2D, and 3D code all look the same. We shall demonstrate what this
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means by extending the 2D solver navier_stokes_channel.py to a simulator
where the domain is a box (the unit cube in the scaled model).

a) Set up boundary conditions for u at all points on the boundary. Set up
boundary conditions for p at all points on the boundary as this is required
by our Poisson equation for p (but not in the original mathematical model –
there, knowing p at one point throughout time is sufficient).

Solution. At the inlet x = 0 we have the velocity completely described:
(ux,0,0). At the channel walls, y = 0 and y = 1, we also have the velocity
completely described: u = (0,0,0) because of no-slip. At the outlet x=1 we
do not specify anything. This means that the boundary integrals in Step 1
vanish and that p= 0 and ∂u/∂n= 0, with n as the x direction, implying “no
change” with x, which is reasonable (since we know that ∂/∂x = 0 because
of incompressibility). For the pressure we set p = 8 at x = 0 and p = 0 at
x= 1 to represent a scaled pressure gradient equal to 8 (which leads to a unit
maximum velocity). At y = 0 and y = 1 we do not specify anything, which
implies ∂p/∂y = 0. This is a condition much discussed in the literature, but
it works perfectly in channel flow with straight walls.

The two remaining boundaries, z = 0 and z = 1, requires attention. For
the pressure, “nothing happens” in the z direction so ∂p/∂z = ∂p/∂n = 0
is the condition. This is automatically implemented by the finite element
method. For the velocity we also have a “nothing happens” criterion in the
3rd direction, and we can in addition use the assumption of uz = 0, if needed.
The derivative criterion means ∂u/∂z = ∂u/∂n= 0 in the boundary integrals.
There is also an integral involving pnz in a component PDE with uz in all
terms.

b) Modify the navier_stokes_channel.py file so it computes 3D channel
flow.

Solution. Wemust switch the domain from UnitSquareMesh to UnitCubeMesh.
We must also switch all 3-vectors to 2-vectors, such as replacing going from
(0,0) to (0,0,0) in bcu_noslip. Similarly, f and u_e must extend their
2-vectors to 3-vectors.

from fenics import *
import numpy as np

T = 10.0 # final time
num_steps = 500 # number of time steps
dt = T / num_steps # time step size
mu = 1 # kinematic viscosity
rho = 1 # density

# Create mesh and define function spaces
mesh = UnitCubeMesh(4, 8, 4)
V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)
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# Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 1)’
walls = ’near(x[1], 0) || near(x[1], 1)’

# Define boundary conditions
bcu_noslip = DirichletBC(V, Constant((0, 0, 0)), walls)
bcp_inflow = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u0 = Function(V)
u1 = Function(V)
p0 = Function(Q)
p1 = Function(Q)

# Define expressions used in variational forms
U = 0.5*(u0 + u)
n = FacetNormal(mesh)
f = Constant((0, 0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

# Define strain-rate tensor
def epsilon(u):

return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u0) / k, v)*dx + \

rho*dot(dot(u0, nabla_grad(u0)), v)*dx \
+ inner(sigma(U, p0), epsilon(v))*dx \
+ dot(p0*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- rho*dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p0), nabla_grad(q))*dx - (1/k)*div(u1)*q*dx

# Define variational problem for step 3
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a3 = dot(u, v)*dx
L3 = dot(u1, v)*dx - k*dot(nabla_grad(p1 - p0), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Time-stepping
t = 0
for n in xrange(num_steps):

# Update current time
t += dt

# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u1.vector(), b1)

# Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p1.vector(), b2)

# Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u1.vector(), b3)

# Plot solution
plot(u1)

# Compute error
u_e = Expression((’4*x[1]*(1.0 - x[1])’, ’0’, ’0’), degree=2)
u_e = interpolate(u_e, V)
error = np.abs(u_e.vector().array() - u1.vector().array()).max()
print(’t = %.2f: error = %.3g’ % (t, error))
print(’max u:’, u1.vector().array().max())

# Update previous solution
u0.assign(u1)
p0.assign(p1)

# Hold plot
interactive()
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3.4.4 Flow past a cylinder

We now turn our attention to a more challenging physical example: flow past
a circular cylinder. The geometry and parameters are taken from problem
DFG 2D-2 in the FEATFLOW/1995-DFG benchmark suite and is illustrated
in Figure 3.3. The kinematic viscosity is given by ν = 0.001 = µ/% and the
inflow velocity profile is specified as

u(x,y, t) =
(

1.5 · 4y(1−y)
0.412 ,0

)
,

which has a maximum magnitude of 1.5 at y = 0.41/2. We do not scale
anything in this benchmark since exact parameters in the case we want to
simulate are known.

Fig. 3.3 Geometry for the flow past a cylinder test problem. Notice the slightly per-
turbed and unsymmetric geometry.

FEniCS implementation. So far all our domains have been simple shapes
such as a unit square or a rectangular box. A number of such simple meshes
may be created in FEniCS using the built-in meshes (UnitIntervalMesh,
UnitSquareMesh, UnitCubeMesh, IntervalMesh, RectangleMesh, and BoxMesh).
FEniCS supports the creation of more complex meshes via a technique called
constructive solid geometry (CSG), which lets us define geometries in terms
of simple shapes (primitives) and set operations: union, intersection, and set
difference. The set operations are encoded in FEniCS using the operators +
(union), * (intersection), and - (set difference). To access the CSG function-
ality in FEniCS, one must import the FEniCS module mshr which provides
the extended meshing functionality of FEniCS.

The geometry for the cylinder flow test problem can be defined easily by
first defining the rectangular channel and then subtracting the circle:

channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
geometry = channel - cylinder

We may then create the mesh by calling the function generate_mesh:

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
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mesh = generate_mesh(geometry, 64)

To solve the cylinder test problem, we only need to make a few minor
changes to the code we wrote for the Poiseuille flow test case. Besides defining
the new mesh, the only change we need to make is to modify the boundary
conditions and the time step size. The boundaries are specified as follows:

inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 2.2)’
walls = ’near(x[1], 0) || near(x[1], 0.41)’
cylinder = ’on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3’

The last line may seem cryptic before you catch the idea: we want to pick
out all boundary points (on_boundary) that also lie within the 2D domain
[0.1,0.3]× [0.1,0.3], see Figure 3.3. The only possible points are then the
points on the circular boundary!

In addition to these essential changes, we will make a number of small
changes to improve our solver. First, since we need to choose a relatively
small time step to compute the solution (a time step that is too large will
make the solution blow up) we add a progress bar so that we can follow the
progress of our computation. This can be done as follows:

progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

t = 0.0
for n in range(num_steps):

# Update current time
t += dt

# Place computation here

# Update progress bar
progress.update(t / T)

Log levels and printing in FEniCS

Notice the call to set_log_level(PROGRESS) which is essential to make
FEniCS actually display the progress bar. FEniCS is actually quite in-
formative about what is going on during a computation but the amount
of information printed to screen depends on the current log level. Only
messages with a priority higher than or equal to the current log level
will be displayed. The predefined log levels in FEniCS are DBG, TRACE,
PROGRESS, INFO, WARNING, ERROR, and CRITICAL. By default, the log
level is set to INFO which means that messages at level DBG, TRACE, and
PROGRESS will not be printed. Users may print messages using the FEn-
iCS functions info, warning, and error which will print messages at
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the obvious log level (and in the case of error also throw an exception
and exit). One may also use the call log(level, message) to print a
message at a specific log level.

Since the system(s) of linear equations are significantly larger than for the
simple Poiseuille flow test problem, we choose to use an iterative method
instead of the default direct (sparse) solver used by FEniCS when calling
solve. Efficient solution of linear systems arising from the discretization of
PDEs requires the choice of both a good iterative (Krylov subspace) method
and a good preconditioner. For this problem, we will simply use the biconju-
gate gradient stabilized method (BiCGSTAB). This can be done by adding
the keyword bicgstab in the call to solve. We also add a preconditioner,
ilu to further speed up the computations:

solve(A1, u1.vector(), b1, ’bicgstab’, ’ilu’)
solve(A2, p1.vector(), b2, ’bicgstab’, ’ilu’)
solve(A3, u1.vector(), b3, ’bicgstab’)

Finally, to be able to postprocess the computed solution in Paraview, we
store the solution to file in each time step. To avoid cluttering our working
directory with a large number of solution files, we make sure to store the
solution in a subdirectory:

vtkfile_u = File(’navier_stokes_cylinder/velocity.pvd’)
vtkfile_p = File(’navier_stokes_cylinder/pressure.pvd’)

Note that one does not need to create the directory before running the pro-
gram. It will be created automatically by FEniCS.

We also store the solution using a FEniCS TimeSeries. This allows us
to store the solution not for visualization (as when using VTK files), but
for later reuse in a computation as we will see in the next section. Using a
TimeSeries it is easy and efficient to read in solutions from certain points in
time during a simulation. The TimeSeries class uses a binary HDF5 file for
efficient storage and access to data.

Figures 3.4 and 3.5 show the velocity and pressure at final time visualized
in Paraview. For the visualization of the velocity, we have used the Glyph
filter to visualize the vector velocity field. For the visualization of the pressure,
we have used the Warp By Scalar filter.

Fig. 3.4 Plot of the velocity for the cylinder test problem at final time.
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Fig. 3.5 Plot of the pressure for the cylinder test problem at final time.

The complete code for the cylinder test problem looks as follows:

from fenics import *
from mshr import *
import numpy as np

T = 5.0 # final time
num_steps = 5000 # number of time steps
dt = T / num_steps # time step size
mu = 0.001 # dynamic viscosity
rho = 1 # density

# Create mesh
channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
geometry = channel - cylinder
mesh = generate_mesh(geometry, 64)

# Define function spaces
V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)

# Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 2.2)’
walls = ’near(x[1], 0) || near(x[1], 0.41)’
cylinder = ’on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3’

# Define inflow profile
inflow_profile = (’4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)’, ’0’)

# Define boundary conditions
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bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]
bcp = [bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

# Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)

# Define symmetric gradient
def epsilon(u):

return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \

+ rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- rho*dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
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A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Create VTK files for visualization output
vtkfile_u = File(’navier_stokes_cylinder/velocity.pvd’)
vtkfile_p = File(’navier_stokes_cylinder/pressure.pvd’)

# FIXME: mpi_comm_world should not be needed here, fix in FEniCS!

# Create time series for saving solution for later
timeseries_u = TimeSeries(’navier_stokes_cylinder/velocity’)
timeseries_p = TimeSeries(’navier_stokes_cylinder/pressure’)

# Save mesh to file for later
File(’cylinder.xml.gz’) << mesh

# Create progress bar
progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

# Time-stepping
t = 0
for n in range(num_steps):

# Update current time
t += dt

# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1, ’bicgstab’, ’ilu’)

# Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p_.vector(), b2, ’bicgstab’, ’ilu’)

# Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u_.vector(), b3, ’bicgstab’)

# Plot solution
plot(u_, title=’Velocity’)
plot(p_, title=’Pressure’)

# Save solution to file (VTK)
vtkfile_u << (u_, t)
vtkfile_p << (p_, t)

# Save solution to file (HDF5)
timeseries_u.store(u_.vector(), t)
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timeseries_p.store(p_.vector(), t)

# Update previous solution
u_n.assign(u_)
p_n.assign(p_)

# Update progress bar
progress.update(t / T)
print(’u max:’, u_.vector().array().max())

# Hold plot
interactive()

The complete code can be found in the file ft09_navier_stokes_cylinder.py.

3.5 A system of advection–diffusion–reaction
equations

The problems we have encountered so far—with the notable exception of the
Navier–Stokes equations—all share a common feature: they all involve mod-
els expressed by a single scalar or vector PDE. In many situations the model
is instead expressed as a system of PDEs, describing different quantities and
with possibly (very) different physics. As we saw for the Navier–Stokes equa-
tions, one way to solve a system of PDEs in FEniCS is to use a splitting
method where we solve one equation at a time and feed the solution from
one equation into the next. However, one of the strengths with FEniCS is
the ease by which one can instead define variational problems that couple
several PDEs into one compound system. In this section, we will look at how
to use FEniCS to write solvers for such systems of coupled PDEs. The goal
is to demonstrate how easy it is to implement fully implicit, also known as
monolithic, solvers in FEniCS.

3.5.1 PDE problem

Our model problem is the following system of advection–diffusion–reaction
equations:



80 3 A Gallery of finite element solvers

∂u1
∂t

+w ·∇u1−∇· (ε∇u1) = f1−Ku1u2, (3.36)

∂u2
∂t

+w ·∇u2−∇· (ε∇u2) = f2−Ku1u2, (3.37)

∂u3
∂t

+w ·∇u3−∇· (ε∇u3) = f3 +Ku1u2−Ku3. (3.38)

This system models the chemical reaction between two species A and B
in some domain Ω:

A+B→ C.

We assume that the equation is first-order, meaning that the reaction rate
is proportional to the concentrations [A] and [B] of the two species A and B:

d
dt [C] =K[A][B].

We also assume that the formed species C spontaneously decays with a rate
proportional to the concentration [C]. In the PDE system (3.36)–(3.38), we
use the variables u1, u2, and u3 to denote the concentrations of the three
species:

u1 = [A], u2 = [B], u3 = [C].

We see that the chemical reactions are accounted for in the right-hand sides
of the PDE system (3.36)–(3.38).

The chemical reactions take part at each point in the domain Ω. In addi-
tion, we assume that the species A, B, and C diffuse throughout the domain
with diffusivity ε (the terms −∇· (ε∇ui)) and are advected with velocity w
(terms like w ·∇ui).

To make things visually and physically interesting, we shall let the chemical
reaction take place in the velocity field computed from the solution of the
incompressible Navier–Stokes equations around a cylinder from the previous
section. In summary, we will thus be solving the following coupled system of
nonlinear PDEs:

%

(
∂w

∂t
+w ·∇w

)
=∇·σ(w,p) +f, (3.39)

∇·w = 0, (3.40)
∂u1
∂t

+w ·∇u1−∇· (ε∇u1) = f1−Ku1u2, (3.41)

∂u2
∂t

+w ·∇u2−∇· (ε∇u2) = f2−Ku1u2, (3.42)

∂u3
∂t

+w ·∇u3−∇· (ε∇u3) = f3 +Ku1u2−Ku3. (3.43)
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We assume that u1 = u2 = u3 = 0 at t= 0 and inject the species A and B into
the system by specifying nonzero source terms f1 and f2 close to the corners
at the inflow, and take f3 = 0. The result will be that A and B are convected
by advection and diffusion throughout the channel, and when they mix the
species C will be formed.

Since the system is one-way coupled from the Navier–Stokes subsystem to
the advection–diffusion–reaction subsystem, we do not need to recompute the
solution to the Navier–Stokes equations, but can just read back the previously
computed velocity field w and feed it into our equations. But we do need to
learn how to read and write solutions from time-dependent PDE problems.

3.5.2 Variational formulation

We obtain the variational formulation of our system by multiplying each
equation by a test function, integrating the second-order terms −∇· (ε∇ui)
by parts, and summing up the equations. When working with FEniCS it is
convenient to think of the PDE system as a vector of equations. The test
functions are collected in a vector too, and the variational formulation is the
inner product of the vector PDE and the vector test function.

We also need introduce some discretization in time. We will use the back-
ward Euler method as before when we solved the heat equation and approx-
imate the time derivatives by (un+1

i −uni )/∆t. Let v1, v2, and v3 be the test
functions, or the components of the test vector function. The inner product
results in

∫
Ω

(∆t−1(un+1
1 −un1 )v1 +w ·∇un+1

1 v1 + ε∇un+1
1 ·∇v1)dx (3.44)

+
∫
Ω

(∆t−1(un+1
2 −un2 )v2 +w ·∇un+1

2 v2 + ε∇un+1
2 ·∇v2)dx (3.45)

+
∫
Ω

(∆t−1(un+1
3 −un3 )v3 +w ·∇un+1

3 v3 + ε∇un+1
3 ·∇v3)dx (3.46)

−
∫
Ω

(f1v1 +f2v2 +f3v3)dx (3.47)

−
∫
Ω

(−Kun+1
1 un+1

2 v1−Kun+1
1 un+1

2 v2 +Kun+1
1 un+1

2 v3−Kun+1
3 v3)dx= 0.

(3.48)

For this problem it is natural to assume homogeneous Neumann boundary
conditions on the entire boundary for u1, u2, and u3; that is, ∂ui/∂n= 0 for
i= 1,2,3. This means that the boundary terms vanish when we integrate by
parts.
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3.5.3 FEniCS implementation

The first step is to read the mesh from file. Luckily, we made sure to save the
mesh to file in the Navier–Stokes example and can now easily read it back
from file:

mesh = Mesh(cylinder.xml.gz’)

The mesh is stored in the native FEniCS XML format (with additional gzip-
ping to decrease the file size).

Next, we need to define the finite element function space. For this problem,
we need to define several spaces. The first space we create is the space for
the velocity field w from the Navier–Stokes simulation. We call this space W
and define the space by

W = VectorFunctionSpace(mesh, ’P’, 2)

It is important that this space is exactly the same as the space we used for the
velocity field in the Navier–Stokes solver. To read the values for the velocity
field, we use a TimeSeries:

timeseries_w = TimeSeries(’navier_stokes_cylinder/velocity’)

This will initialize the object timeseries_w which we will call later in the
time-stepping loop to retrieve values from the file velocity.h5 (in binary
HDF5 format).

For the three concentrations u1, u2, and u3, we want to create a mixed
space with functions that represent the full system (u1,u2,u3) as a single
entity. To do this, we need to define a MixedElement as the product space of
three simple finite elements and then used the mixed element to define the
function space:

P1 = FiniteElement(’P’, ’triangle’, 1)
element = MixedElement([P1, P1, P1])
V = FunctionSpace(mesh, element)

Mixed elements as products of elements

FEniCS also allows finite elements to be defined as products of simple
elements (or mixed elements). For example, the well-known Taylor–
Hood element, with quadratic velocity components and linear pressure
functions, may be defined as follows:

P2 = VectorElement(’P’, ’triangle’, 2)
P1 = FiniteElement(’P’, ’triangle’, 1)
TH = P2 * P1
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This syntax works great for two elements, but for three or more ele-
ments we meet a subtle issue in how the Python interpreter handles the
* operator. For the reaction system, we create the mixed element by
element = MixedElement([P1, P1, P1]) and one would be tempted
to write

element = P1 * P1 * P1

However, this is equivalent to writing element = (P1 * P1) * P1 so
the result will be a mixed element consisting of two subsystems, the
first of which in turn consists of two scalar subsystems.

Finally, we remark that for the simple case of a mixed system con-
sisting of three scalar elements as for the reaction system, the definition
is in fact equivalent to using a standard vector-valued element:

element = VectorElement(’P’, ’triangle’, 1, dim=3)
V = FunctionSpace(mesh, element)

Once the space has been created, we need to define our test functions and
finite element functions. Test functions for a mixed function space can be
created by replacing TestFunction by TestFunctions:

v_1, v_2, v_3 = TestFunctions(V)

Since the problem is nonlinear, we need to work with functions rather than
trial functions for the unknowns. This can be done by using the corresponding
Functions construction in FEniCS. However, as we will need to access the
Function for the entire system itself, we first need to create that function
and then access its components:

u = Function(V)
u_1, u_2, u_3 = split(u)

These functions will be used to represent the unknowns u1, u2, and u3 at the
new time level n+ 1. The corresponding values at the previous time level n
are denoted by u_n1, u_n2, and u_n3 in our program.

When now all functions and test functions have been defined, we can
express the nonlinear variational problem (3.44):

F = ((u_1 - u_n1) / k)*v_1*dx + dot(w, grad(u_1))*v_1*dx \
+ eps*dot(grad(u_1), grad(v_1))*dx + K*u_1*u_2*v_1*dx \
+ ((u_2 - u_n2) / k)*v_2*dx + dot(w, grad(u_2))*v_2*dx \
+ eps*dot(grad(u_2), grad(v_2))*dx + K*u_1*u_2*v_2*dx \
+ ((u_3 - u_n3) / k)*v_3*dx + dot(w, grad(u_3))*v_3*dx \
+ eps*dot(grad(u_3), grad(v_3))*dx - K*u_1*u_2*v_3*dx + K*u_3*v_3*dx \
- f_1*v_1*dx - f_2*v_2*dx - f_3*v_3*dx

The time-stepping simply consists of solving this variational problem in
each time step by a call to the solve function:
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t = 0
for n in range(num_steps):

t += dt
timeseries_w.retrieve(w.vector(), t)
solve(F == 0, u)
u_n.assign(u)

In each time step, we first read the current value for the velocity field from the
time series we have previously stored. We then solve the nonlinear system,
and assign the computed values to the left-hand side values for the next time
interval.

The solution at the final time is shown in Figure 3.6. We clearly see the
advection of the species A and B and the formation of C along the center of
the channel where A and B meet.

Fig. 3.6 Plot of the concentrations of the three species A, B, and C (from top to
bottom) at final time.

The complete code is presented below.

from fenics import *

T = 5.0 # final time
num_steps = 500 # number of time steps
dt = T / num_steps # time step size
eps = 0.01 # diffusion coefficient
K = 10.0 # reaction rate

# Read mesh from file
mesh = Mesh(’cylinder.xml.gz’)
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# Define function space for velocity
W = VectorFunctionSpace(mesh, ’P’, 2)

# Define function space for system of concentrations
P1 = FiniteElement(’P’, ’triangle’, 1)
element = MixedElement([P1, P1, P1])
V = FunctionSpace(mesh, element)

# Define test functions
v_1, v_2, v_3 = TestFunctions(V)

# Define functions for velocity and concentrations
w = Function(W)
u = Function(V)
u_n = Function(V)

# Split system functions to access components
u_1, u_2, u_3 = split(u)
u_n1, u_n2, u_n3 = split(u_n)

# Define source terms
f_1 = Expression(’pow(x[0]-0.1,2)+pow(x[1]-0.1,2)<0.05*0.05 ? 0.1 : 0’,

degree=1)
f_2 = Expression(’pow(x[0]-0.1,2)+pow(x[1]-0.3,2)<0.05*0.05 ? 0.1 : 0’,

degree=1)
f_3 = Constant(0)

# Define expressions used in variational forms
k = Constant(dt)
K = Constant(K)
eps = Constant(eps)

# Define variational problem
F = ((u_1 - u_n1) / k)*v_1*dx + dot(w, grad(u_1))*v_1*dx \

+ eps*dot(grad(u_1), grad(v_1))*dx + K*u_1*u_2*v_1*dx \
+ ((u_2 - u_n2) / k)*v_2*dx + dot(w, grad(u_2))*v_2*dx \
+ eps*dot(grad(u_2), grad(v_2))*dx + K*u_1*u_2*v_2*dx \
+ ((u_3 - u_n3) / k)*v_3*dx + dot(w, grad(u_3))*v_3*dx \
+ eps*dot(grad(u_3), grad(v_3))*dx - K*u_1*u_2*v_3*dx + K*u_3*v_3*dx \
- f_1*v_1*dx - f_2*v_2*dx - f_3*v_3*dx

# Create time series for reading velocity data
timeseries_w = TimeSeries(’navier_stokes_cylinder/velocity’)

# Create VTK files for visualization output
vtkfile_u_1 = File(’reaction_system/u_1.pvd’)
vtkfile_u_2 = File(’reaction_system/u_2.pvd’)
vtkfile_u_3 = File(’reaction_system/u_3.pvd’)

# Create progress bar
progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

# Time-stepping
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t = 0
for n in range(num_steps):

# Update current time
t += dt

# Read velocity from file
timeseries_w.retrieve(w.vector(), t)

# Solve variational problem for time step
solve(F == 0, u)

# Save solution to file (VTK)
_u_1, _u_2, _u_3 = u.split()
vtkfile_u_1 << _u_1
vtkfile_u_2 << _u_2
vtkfile_u_3 << _u_3

# Update previous solution
u_n.assign(u)

# Update progress bar
progress.update(t / T)

# Hold plot
interactive()

The complete code can be found in the file ft10_reaction_system.py.
Finally, we comment on three important techniques that are very use-

ful when working with systems of PDEs: setting initial conditions, setting
boundary conditions, and extracting components of the system for plotting
or postprocessing.

3.5.4 Setting initial conditions for mixed systems

In our example, we did not need to worry about setting an initial condition,
since we start with u1 = u2 = u3 = 0. This happens automatically in the code
when we set u_n = Function(V). This creates a Function for the whole
system and all degrees of freedom are set to zero.

If we want to set initial conditions for the components of the system sepa-
rately, the easiest solution is to define the initial conditions as a vector-valued
Expression and then project this to the Function representing the whole
system. For example,

u_0 = Expression((’sin(x[0])’, ’cos(x[0]*x[1])’, ’exp(x[1])’), degree=1)
u_n = project(u_0, V)

This defines u1, u2, and u2 to be the projections of sinx, cos(xy), and exp(y),
respectively.
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3.5.5 Setting boundary conditions for mixed systems

In our example, we also did not need to worry about setting boundary condi-
tions since we used a natural Neumann condition. If we want to set Dirichlet
conditions for individual components of the system, this can be done as usual
by the class DirichletBC, but we must specify for which subsystem we set
the boundary condition. For example, to specify that u2 should be equal to
xy on the boundary defined by boundary, we do

u_D = Expression(’x[0]*x[1]’, degree=1)
bc = DirichletBC(V.sub(1), u_D, boundary)

The object bc or a list of such objects containing different boundary condi-
tions, can then be passed to the solve function as usual. Note that numbering
starts at 0 in FEniCS so the subspace corresponding to u2 is V.sub(1).

3.5.6 Accessing components of mixed systems

If u is a Function defined on a mixed function space in FEniCS, there are
several ways in which u can be split into components. Above we already saw
an example of the first of these:

u_1, u_2, u_3 = split(u)

This extracts the components of u as symbols that can be used in a variational
problem. The above statement is in fact equivalent to

u_1 = u[0]
u_2 = u[1]
u_3 = u[2]

Note that u[0] is not really a Function object, but merely a symbolic ex-
pression, just like grad(u) in FEniCS is a symbolic expression and not a
Function representing the gradient. This means that u_1, u_2, u_3 can be
used in a variational problem, but cannot be used for plotting or postpro-
cessing.

To access the components of u for plotting and saving the solution to file,
we need to use a different variant of the split function:

_u_1, _u_2, _u_3 = u.split()

This returns three subfunctions as actual objects with access to the common
underlying data stored in u, which makes plotting and saving to file possible.
Alternatively, we can do

_u_1, _u_2, _u_3 = u.split(deepcopy=True)
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which will create _u_1, _u_2, and u_3 as stand-alone Function objects, each
holding a copy of the subfunction data extracted from u. This is useful in
many situations but is not necessary for plotting and saving solutions to file.



Chapter 4
Subdomains and boundary conditions

So far, we have only looked briefly at how to specify boundary conditions. In
this chapter, we look more closely at how to specify boundary conditions on spe-
cific parts (subdomains) of the boundary and how to combine multiple boundary
conditions. We will also look at how to generate meshes with subdomains and
how to define coefficients and variational problems that look different in different
subdomains.

4.1 Combining Dirichlet and Neumann
conditions

Let’s return to our Poisson solver from Chapter 2 and see how to extend
the mathematics and the implementation to handle a Dirichlet condition in
combination with a Neumann condition. The domain is still the unit square,
but now we set the Dirichlet condition u = uD at the left and right sides,
x= 0 and x= 1, while the Neumann condition

−∂u
∂n

= g

is applied to the remaining sides y = 0 and y = 1.

4.1.1 PDE problem

Let ΓD and ΓN denote the parts of the boundary ∂Ω where the Dirichlet
and Neumann conditions apply, respectively. The complete boundary-value
problem can be written as

c© 2016, Hans Petter Langtangen, Anders Logg.
Released under CC Attribution 4.0 license
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−∇2u= f in Ω, (4.1)
u= uD on ΓD , (4.2)

−∂u
∂n

= g on ΓN . (4.3)

Again we choose u= 1 +x2 + 2y2 as the exact solution and adjust f , g, and
uD accordingly:

f =−6,

g =
{

0, y = 0
4, y = 1

uD = 1 +x2 + 2y2 .

For ease of programming, we may introduce a g function defined over the
whole of Ω such that g takes on the right values at y = 0 and y = 1. One
possible extension is

g(x,y) = 4y .

4.1.2 Variational formulation

The first task is to derive the variational problem. This time we cannot omit
the boundary term arising from the integration by parts, because v is only
zero on ΓD . We have

−
∫
Ω

(∇2u)vdx=
∫
Ω
∇u ·∇vdx−

∫
∂Ω

∂u

∂n
vds,

and since v = 0 on ΓD ,

−
∫
∂Ω

∂u

∂n
vds=−

∫
ΓN

∂u

∂n
vds=

∫
ΓN

gvds,

by applying the boundary condition on ΓN . The resulting weak form reads∫
Ω
∇u ·∇vdx=

∫
Ω
fvdx−

∫
ΓN

gvds. (4.4)

Expressing this equation in the standard notation a(u,v) = L(v) is straight-
forward with
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a(u,v) =
∫
Ω
∇u ·∇vdx, (4.5)

L(v) =
∫
Ω
fvdx−

∫
ΓN

gvds. (4.6)

4.1.3 FEniCS implementation

How does the Neumann condition impact the implementation? Let us revisit
our previous implementation ft01_poisson.py from Section 2.2 and examine
which changes we need to make to incorporate the Neumann condition. It
turns out that only two are necessary.

• The function boundary defining the Dirichlet boundary must be modified.
• The new boundary term must be added to the expression for L.

The first adjustment can be coded as

tol = 1E-14

def boundary_D(x, on_boundary):
if on_boundary:

if near(x[0], 0, tol) or near(x[0], 1, tol):
return True

else:
return False

else:
return False

A more compact implementation reads

def boundary_D(x, on_boundary):
return on_boundary and (near(x[0], 0, tol) or near(x[0], 1, tol))

The second adjustment of our program concerns the definition of L, which
needs to include the Neumann condition:

g = Expression(’4*x[1]’)
L = f*v*dx - g*v*ds

The ds variable implies a boundary integral, while dx implies an integral over
the domain Ω. No other modifications are necessary.

Note that the integration *ds is carried out over the entire boundary,
including the Dirichlet boundary. However, since the test function v vanishes
on the Dirichlet boundary (as a result specifying a DirichletBC), the integral
will only include the contribution from the Neumann boundary.
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4.2 Setting multiple Dirichlet conditions

In the previous section, we used a single function uD(x,y) for setting Dirichlet
conditions at two parts of the boundary. Often it is more practical to use
multiple functions, one for each subdomain of the boundary. Let us return to
the case from Section 4.1 and redefine the problem in terms of two Dirichlet
conditions:

−∇2u= f in Ω,

u= uL on Γ
L

D ,

u= uR on Γ
R

D ,

−∂u
∂n

= g on ΓN .

Here, Γ L

D is the left boundary x = 0, while ΓR

D is the right boundary x = 1.
We note that uL = 1 + 2y2, uR = 2 + 2y2, and g = 4y.

For the boundary condition on Γ L

D , we define the usual triple of an expres-
sion for the boundary value, a function defining the location of the boundary,
and a DirichletBC object:

u_L = Expression(’1 + 2*x[1]*x[1]’)

def boundary_L(x, on_boundary):
tol = 1E-14
return on_boundary and near(x[0], 0, tol)

bc_L = DirichletBC(V, u_L, boundary_L)

For the boundary condition on ΓR

D , we write a similar code snippet:

u_R = Expression(’2 + 2*x[1]*x[1]’)

def boundary_R(x, on_boundary):
tol = 1E-14
return on_boundary and near(x[0], 1, tol)

bc_R = DirichletBC(V, u_R, boundary_R)

We collect the two boundary conditions in a list which we can pass to the
solve function to compute the solution:

bcs = [bc_L, bc_R]
...
solve(a == L, u, bcs)

Note that for boundary values that do not depend on x or y, we might
replace the Expression objects by Constant objects.
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4.3 Defining subdomains for different materials

Solving PDEs in domains made up of different materials is a frequently en-
countered task. In FEniCS, these kinds of problems are handled by defining
subdomains inside the domain. A simple example with two materials (sub-
domains) in 2D will demonstrate the idea.

Ω1 : k1

Ω0 : k0

Fig. 4.1 Medium with discontinuous material properties.

Suppose we want to solve

∇· [κ(x,y)∇u(x,y)] = 0, (4.7)

in a domain Ω consisting of two subdomains where κ takes on a different
value in each subdomain. We take Ω = [0,1]× [0,1] and divide it into two
equal subdomains, as depicted in Figure 4.1,

Ω0 = [0,1]× [0,1/2], Ω1 = [0,1]× (1/2,1] .

We define κ(x,y) = κ0 in Ω0 and κ(x,y) = κ1 in Ω1, where κ0 > 0 and κ1 > 0
are given constants.

Physically, this problem may be viewed as a model of heat conduction,
where the heat conduction in Ω1 is more efficient than in Ω0. An alternative
interpretation is flow in porous media with two geological layers, where the
layers’ ability to transport the fluid differ.
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4.3.1 Using expressions to define subdomains

The simplest way of implementing a variable coefficient κ is to define an
Expression object where we return the appropriate κ value depending on
the position in space. Since we need some testing on the coordinates, the
most straightforward approach is to define a subclass of Expression, where
we can use a full Python method instead of just a C++ string formula for
specifying a function. The method that defines the function is called eval:

class K(Expression):
def set_k_values(self, k_0, k_1):

self.k_0, self.k_1 = k_0, k_1

def eval(self, value, x):
"Set value[0] to value at point x"
tol = 1E-14
if x[1] <= 0.5 + tol:

value[0] = self.k_0
else:

value[0] = self.k_1

# Initialize k
k = K()
k.set_k_values(1, 0.01)

The eval method gives great flexibility in defining functions, but a downside
is that FEniCS will call eval in Python for each node x, which is a slow
process.

An alternative method is to use a C++ string expression as we have seen
before, which is much more efficient in FEniCS. This can be done using inline
if tests in C++:

tol = 1E-14
k_0 = 1.0
k_1 = 0.01
k = Expression(’x[1] <= 0.5 + tol ? k_0 : k_1’,

tol=tol, k_0=k_0, k_1=k_1)

This method of defining variable coefficients works if the subdomains are
simple shapes that can be expressed in terms of geometric inequalities. How-
ever, for more complex subdomains, we will need to use a more general tech-
nique, as we will see next.

4.3.2 Using mesh functions to define subdomains

We now address how to specify the subdomains Ω0 and Ω1 using a more gen-
eral technique. This technique involves the use of two classes that are essential
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in FEniCS when working with subdomains: SubDomain and MeshFunction.
Consider the following definition of the boundary x= 0:

def boundary(x, on_boundary):
tol = 1E-14
return on_boundary and near(x[0], 0, tol)

This boundary definition is actually a shortcut to the more general FEniCS
concept SubDomain. A SubDomain is a class which defines a region in space
(a subdomain) in terms of a member function inside which returns True for
points that belong to the subdomain and False for points that don’t belong
to the subdomain. Here is how to specify the boundary x= 0 as a SubDomain:

class Boundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14
return on_boundary and near(x[0], 0, tol)

boundary = Boundary()
bc = DirichletBC(V, Constant(0), boundary)

We notice that the inside function of the class Boundary is (almost) iden-
tical to the previous boundary definition in terms of the boundary function.
Technically, our class Boundary is a subclass of the FEniCS class SubDomain.

We will use two SubDomain subclasses to define the two subdomains Ω0
and Ω1:

tol = 1E-14

class Omega_0(SubDomain):
def inside(self, x, on_boundary):

return x[1] <= 0.5 + tol

class Omega_1(SubDomain):
def inside(self, x, on_boundary):

return x[1] >= 0.5 - tol

Notice the use of <= and >= in both tests. FEniCS will call the inside
function for each vertex in a cell to determine whether or not the cell belongs
to a particular subdomain. For this reason, it is important that the test
holds for all vertices in cells aligned with the boundary. In addition, we use a
tolerance to make sure that vertices on the internal boundary at y = 0.5 will
belong to both subdomains. This is a little counter-intuitive, but is necessary
to make the cells both above and below the internal boundary belong to
either Ω0 or Ω1.

To define the variable coefficient κ, we will use a powerful tool in FEn-
iCS called a MeshFunction. A MeshFunction is a discrete function that can
be evaluated at a set of so-called mesh entities. A mesh entity in FEn-
iCS is either a vertex, an edge, a face, or a cell (triangle or tetrahedron).
A MeshFunction over cells is suitable to represent subdomains (materials),
while a MeshFunction over facets (edges or faces) is used to represent pieces
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of external or internal boundaries. A MeshFunction over cells can also be used
to represent boundary markers for mesh refinement. A FEniCS MeshFunction
is parameterized both over its data type (like integers or booleans) and its
dimension (0 = vertex, 1 = edge etc.). Special subclasses VertexFunction,
EdgeFunction etc. are provided for easy definition of a MeshFunction of a
particular dimension.

Since we need to define subdomains of Ω in the present example, we make
use of a CellFunction. The constructor is fed with two arguments: 1) the
type of value: ’int’ for integers, ’size_t’ for non-negative (unsigned) in-
tegers, ’double’ for real numbers, and ’bool’ for logical values; 2) a Mesh
object. Alternatively, the constructor can take just a filename and initialize
the CellFunction from data in a file.

We start with creating a CellFunction whose values are non-negative
integers (’size_t’) for numbering the subdomains:

materials = CellFunction(’size_t’, mesh)

Next, we use the two subdomains to mark the cells belonging to each
subdomain:

# Mark subdomains with numbers 0 and 1
subdomain0 = Omega_0()
subdomain1 = Omega_1()
subdomain0.mark(materials, 0)
subdomain1.mark(materials, 1)

This will set the values of the mesh function materials to 0 on each cell
belonging to Ω0 and 1 on all cells belonging to Ω1. Alternatively, we can use
the following equivalent code to mark the cells:

materials.set_all(0)
subdomain1.mark(materials, 1)

To examine the values of the mesh function and see that we have indeed
defined our subdomains correctly, we can simply plot the mesh function:

plot(materials, interactive=True)

We may also wish to store the values of the mesh function for later use:

File(’materials.xml.gz’) << materials

which can later be read back from file as follows:

File(’materials.xml.gz’) >> materials

Now, to use the values of the mesh function materials to define the
variable coefficient κ, we create a FEniCS Expression:

class K(Expression):
def __init__(self, materials, k_0, k_1, **kwargs):

self.materials = materials
self.k_0 = k_0
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self.k_1 = k_1

def eval_cell(self, values, x, cell):
if self.materials[cell.index] == 0:

values[0] = self.k_0
else:

values[0] = self.k_1

k = K(materials, k_0, k_1, degree=0)

This is similar to the Expression subclass we defined above, but we make
use of the member function eval_cell in place of the regular eval function.
This version of the evaluation function has an addition cell argument which
we can use to check on which cell we are currently evaluating the function.

Since we make use of geometric tests to define the two SubDomains for Ω0
and Ω1, the MeshFunction method may seem like an unnecessary compli-
cation of the simple method using an Expression with an if-test. However,
in general the definition of subdomains may be available as a MeshFunction
(from a data file), perhaps generated as part of the mesh generation process,
and not as a simple geometric test. In such cases the method demonstrated
here is the recommended way to define subdomains.

4.3.3 Vectorized version of subdomain definitions

To speed up this code, we can vectorize the expressions:

materials = CellFunction(’size_t’, mesh)
materials.set_all(0) # "the rest"
for m, subdomain in enumerate(subdomains[1:], 1):

subdomain.mark(materials, m)

kappa_values = kappa
V0 = FunctionSpace(mesh, ’DG’, 0)
kappa = Function(V0)
help = np.asarray(materials.array(), dtype=np.int32)
kappa.vector()[:] = np.choose(help, kappa_values)

The help array is required since choose cannot work with materials.array()
because this array has elements of type uint32. We must therefore transform
this array to an array help with standard int32 integers.

4.3.4 Using C++ code snippets to define subdomains

The SubDomain and Expression Python classes are very convenient, but
their use leads to function calls from C++ to Python for each node in the
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mesh. Since this involves a significant cost, we need to make use of C++ code
for large-scale computational problems.

Instead of writing the SubDomain subclass in Python, we may instead use
the CompiledSubDomain tool in FEniCS to specify the subdomain in C++
code and thereby speed up our code. Consider the definition of the classes
Omega_0 and Omega_1 above in Python. The key strings that define these
subdomains can be expressed in C++ syntax and fed to CompiledSubDomain
as follows:

tol = 1E-14
subdomain0 = CompiledSubDomain(’x[1] <= 0.5 + tol’, tol=tol)
subdomain1 = CompiledSubDomain(’x[1] >= 0.5 - tol’, tol=tol)

As seen, one can have parameters in the strings and specify their values by
keyword arguments. The resulting objects, subdomain0 and subdomain1, can
be used as ordinary SubDomain objects.

Compiled subdomain strings can be applied for specifying boundaries as
well:

boundary_R = CompiledSubDomain(’on_boundary && near(x[0], 1, tol)’,
tol=1E-14)

It is also possible to feed the C++ string (without parameters) directly
as the third argument to DirichletBC without explicitly constructing a
CompiledSubDomain object:

bc1 = DirichletBC(V, value, ’on_boundary && near(x[0], 1, tol)’)

Python Expression classes may also be redefined using C++ for more ef-
ficient code. Consider again the definition of the class K above for the variable
coefficient κ = κ(x). This may be redefined using a C++ code snippet and
the keyword cppcode to the regular FEniCS Expression class:

cppcode = """
class K : public Expression
{
public:

void eval(Array<double>& values,
const Array<double>& x,
const ufc::cell& cell) const

{
if ((*materials)[cell.index] == 0)

values[0] = k_0;
else

values[0] = k_1;
}

std::shared_ptr<MeshFunction<std::size_t>> materials;
double k_0;
double k_1;
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};
"""

k = Expression(cppcode=cppcode, degree=0)
k.materials = materials
k.k_0 = k_0
k.k_1 = k_1

Exercise 4.1: Efficiency of Python vs C++ expressions

Consider a cube mesh withN cells in each spatial direction. We want to define
a Function on this mesh where the values are given by the mathematical
function f(x,y,z) = asin(bxyz), where a and b are two parameters. Write a
class SineXYZ:

class SineXYZ(Expression):
def __init__(self, a, b):

self.a, self.b = a, b

def eval(self, value, x):
value[0] = self.a*sin(self.b*x[0]*x[1]*x[2])

Create an alternative Expression based on giving the formula for f(x,y,z)
as a C++ code string. Compare the computational efficiency of the two im-
plementations (e.g., using time.clock() to measure the CPU time).

The sin function used in class SineXYZ.eval can mean many things.
This is an advanced FEniCS function if imported from fenics. Much more
efficient versions for sin of numbers are found in math.sin and numpy.sin.
Compare the use sin from fenics, math, numpy, and sympy (note that sin
from sympy is very slow).

Solution. Here is an appropriate program:

from __future__ import print_function
from fenics import *
import time

def make_sine_Function(N, method):
"""Fill a Function with sin(x*y*z) values."""
mesh = UnitCubeMesh(N, N, N)
V = FunctionSpace(mesh, ’Lagrange’, 2)

if method.startswith(’Python’):
if method.endswith(’fenics.sin’):

# Need sin as local variable in this function
from fenics import sin

elif method.endswith(’math.sin’):
from math import sin

elif method.endswith(’numpy.sin’):
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from numpy import sin
elif method.endswith(’sympy.sin’):

from sympy import sin
else:

raise NotImplementedError(’method=%s’ % method)
print(’sin:’, sin, type(sin))

class SineXYZ(Expression):
def __init__(self, a, b):

self.a, self.b = a, b

def eval(self, value, x):
value[0] = self.a*sin(self.b*x[0]*x[1]*x[2])

expr = SineXYZ(a=1, b=2)

elif method == ’C++’:
expr = Expression(’a*sin(b*x[0]*x[1]*x[2])’, a=1, b=2)

t0 = time.clock()
u = interpolate(expr, V)
t1 = time.clock()
return u, t1-t0

def main(N):
u, cpu_py_fenics = make_sine_Function(N, ’Python-fenics.sin’)
u, cpu_py_math = make_sine_Function(N, ’Python-math.sin’)
u, cpu_py_numpy = make_sine_Function(N, ’Python-numpy.sin’)
u, cpu_py_sympy = make_sine_Function(N, ’Python-sympy.sin’)
u, cpu_cpp = make_sine_Function(N, ’C++’)
print("""DOFs: %d

Python:
fenics.sin: %.2f
math.sin: %.2f
numpy.sin: %.2f
sympy.sin: %.2f
C++: %.2f
Speed-up: math: %.2f sympy: %.2f""" %

(u.function_space().dim(),
cpu_py_fenics, cpu_py_math,
cpu_py_numpy, cpu_py_sympy,
cpu_cpp,
cpu_py_math/float(cpu_cpp),
cpu_py_sympy/float(cpu_cpp)))

def profile():
import cProfile
prof = cProfile.Profile()
prof.runcall(main)
prof.dump_stats("tmp.profile")
# http://docs.python.org/2/library/profile.html

main(20)
#profile()
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Running the program shows that sin from math is the most efficient choice,
but a string C++ runs 40 times faster. Note that fenics.sin, which is a
sine function in the UFL language that can work with symbolic expressions
in finite element forms, is (naturally) less efficient than the sin functions for
numbers in math and numpy.
Filename: Expression_efficiency.

4.4 Setting multiple Dirichlet, Neumann, and
Robin conditions

Consider again the model problem from Section 4.2 where we had both Dirich-
let and Neumann conditions. The term g*v*ds in the expression for L implies
a boundary integral over the complete boundary, or in FEniCS terms, an in-
tegral over all exterior facets. This means that the boundary integral extends
also over the part of the boundary ΓD where we have Dirichlet conditions.
However, only the integral over ΓN will contribute since v = 0 on ΓD (which
happens when we apply the Dirichlet boundary condition).

From an efficiency point of view, we would ideally like to compute the
integral g*v*ds only over the part of the boundary where we actually have
Neumann conditions. More importantly, in other problems one may have dif-
ferent Neumann conditions or other conditions like the Robin type condition.
This can be handled in FEniCS by defining a MeshFunction that marks dif-
ferent portions of the boundary. The same technique can also be used to treat
multiple Dirichlet conditions.

4.4.1 Three types of boundary conditions

We extend our repertoire of boundary conditions to three types: Dirichlet,
Neumann, and Robin. Dirichlet conditions apply to some parts Γ 0

D , Γ
1
D , ...,

of the boundary:

u0
D on Γ 0

D , u1
D on Γ 1

D , . . .

where uiD are prescribed functions, i = 0,1, . . . On other parts, Γ 0
N , Γ

1
N , and

so on, we have Neumann conditions:

−κ∂u
∂n

= g0 on Γ 0
N , −κ

∂u

∂n
= g1 on Γ 1

N , . . .

Finally, we have Robin conditions:
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−κ∂u
∂n

= r(u−s),

where r and s are specified functions. The Robin condition is most often
used to model heat transfer to the surroundings and arise naturally from
Newton’s cooling law. In that case, r is a heat transfer coefficient, and s is
the temperature of the surroundings. Both can be space and time-dependent.
The Robin conditions apply at some parts Γ 0

R , Γ
1
R , and so forth:

−κ∂u
∂n

= r0(u−s0) on Γ 0
R , −κ

∂u

∂n
= r1(u−s1) on Γ 1

R , . . .

4.4.2 PDE problem

With the notation above, the model problem to be solved with multiple
Dirichlet, Neumann, and Robin conditions can be formulated as follows:

−∇· (κ∇u) =−f, in Ω, (4.8)
u= uiD on Γ iD , i= 0,1, . . . (4.9)

−κ∂u
∂n

= gi on Γ iN , i= 0,1, . . . (4.10)

−κ∂u
∂n

= ri(u−si) on Γ iR , i= 0,1, . . . (4.11)

4.4.3 Variational formulation

As usual, we multiply by a test function v and integrate by parts:

−
∫
Ω
∇· (κ∇u)vdx=

∫
Ω
κ∇u ·∇vdx−

∫
∂Ω

κ
∂u

∂n
vds.

On the Dirichlet part of the boundary (Γ iD), the boundary integral vanishes
since v = 0. On the remaining part of the boundary, we split the boundary
integral into contributions from the Neumann part (Γ iN) and Robin part (Γ iR).
Inserting the boundary conditions, we obtain

−
∫
∂Ω

κ
∂u

∂n
vds=−

∑
i

∫
Γ i

N

κ
∂u

∂n
ds−

∑
i

∫
Γ i

R

κ
∂u

∂n
ds

=
∑
i

∫
Γ i

N

gids+
∑
i

∫
Γ i

R

ri(u−si)ds.
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We thus obtain the following variational problem:

F =
∫
Ω
κ∇u ·∇vdx+

∑
i

∫
Γ i

N

givds+
∑
i

∫
Γ i

R

ri(u−si)vds−
∫
Ω
fvdx= 0 .

(4.12)
We have been used to writing this variational formulation in the standard

notation a(u,v) =L(v), which requires that we identify all integrals with both
u and v, and collect these in a(u,v), while the remaining integrals with v and
not u go into L(v). The integrals from the Robin condition must for this
reason be split in two parts:∫

Γ i
R

ri(u−si)vds=
∫
Γ i

R

riuvds−
∫
Γ i

R

risivds.

We then have

a(u,v) =
∫
Ω
κ∇u ·∇vdx+

∑
i

∫
Γ i

R

riuvds, (4.13)

L(v) =
∫
Ω
fvdx−

∑
i

∫
Γ i

N

givds+
∑
i

∫
Γ i

R

risivds. (4.14)

Alternatively, we may keep the formulation (4.12) and either solve the varia-
tional problem as a nonlinear problem (F == 0) in FEniCS or use the FEniCS
functions lhs and rhs to extract the bilinear and linear parts of F:

a = lhs(F)
L = rhs(F)

Note that if we choose the solve this linear problem as a nonlinear problem,
the Newton iteration will converge in a single iteration.

4.4.4 FEniCS implementation

Let us examine how to extend our Poisson solver to handle general combina-
tions of Dirichlet, Neumann, and Robin boundary conditions. Compared to
our previous code, we must consider the following extensions:

• Defining markers for the different parts of the boundary.
• Splitting the boundary integral into parts using the markers.

A general approach to the first task is to mark each of the desired boundary
parts with markers 0, 1, 2, and so forth. Here we aim at the four sides of the
unit square, marked with 0 (x= 0), 1 (x= 1), 2 (y = 0), and 3 (y = 1). The
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markers will be defined using a MeshFunction, but contrary to Section 4.3,
this is not a function over cells, but a function over the facets of the mesh.
We use a FacetFunction for this purpose:

boundary_markers = FacetFunction(’size_t’, mesh)

As in Section 4.3 we use a subclass of SubDomain to identify the various
parts of the mesh function. Problems with domains of more complicated
geometries may set the mesh function for marking boundaries as part of the
mesh generation. In our case, the x= 0 boundary can be marked by

class BoundaryX0(SubDomain):
tol = 1E-14
def inside(self, x, on_boundary):

return on_boundary and near(x[0], 0, tol)

bx0 = BoundaryX0()
bx0.mark(boundary_markers, 0)

Similarly, we make the classes BoundaryX1 for the x= 1 boundary, BoundaryY0
for the y = 0 boundary, and BoundaryY1 for the y = 1 boundary, and mark
these as subdomains 1, 2, and 3, respectively.

For generality of the implementation, we let the user specify what kind
of boundary condition that applies to each of the four boundaries. We set
up a Python dictionary for this purpose, with the key as subdomain number
and the value as a dictionary specifying the kind of condition as key and a
function as its value. For example,

boundary_conditions = {0: {’Dirichlet’: u_D},
1: {’Robin’: (r, s)},
2: {’Neumann’: g},
3: {’Neumann’, 0}}

specifies

• a Dirichlet condition u= uD for x= 0;
• a Robin condition −κ∂nu= r(u−s) for x= 1;
• a Neumann condition −κ∂nu= g for y = 0;
• a Neumann condition −κ∂nu= 0 for y = 1.

As explained in Section 4.2, multiple Dirichlet conditions must be collected
in a list of DirichletBC objects. Based on the boundary_conditions data
structure above, we can construct this list by the following code snippet:

bcs = []
for i in boundary_conditions:

if ’Dirichlet’ in boundary_conditions[i]:
bc = DirichletBC(V, boundary_conditions[i][’Dirichlet’],

boundary_markers, i))
bcs.append(bc)
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A new aspect of the variational problem is the two distinct boundary
integrals over Γ iN and Γ iR . Having a mesh function over exterior cell facets
(our boundary_markers object), where subdomains (boundary parts) are
numbered as 0,1,2, . . ., the special symbol ds(0) implies integration over
subdomain (part) 0, ds(1) denotes integration over subdomain (part) 1, and
so on. The idea of multiple ds-type objects generalizes to volume integrals
too: dx(0), dx(1), etc., are used to integrate over subdomain 0, 1, etc., inside
Ω.

To express integrals over the boundary parts using ds(i), we must first
redefine the measure ds in terms of our boundary markers:

ds = Measure(’ds’, domain=mesh, subdomain_data=boundary_markers)

Similarly, if we want integration over different parts of the domain, we redefine
dx as

dx = Measure(’dx’, domain=mesh, subdomain_data=domain_markers)

where domain_markers is a CellFunction defining subdomains in Ω.
Suppose we have a Robin condition with values r and s on subdomain R,

a Neumann condition with value g on subdomain N. The variational form can
then be written

a = kappa*dot(grad(u), grad(v))*dx + r*u*v*ds(R)
L = f*v*dx - g*v*ds(N) + r*s*v*ds(R)

In our case, things get a bit more complicated since the information about
integrals in Neumann and Robin conditions are in the boundary_conditions
data structure. We can collect all Neumann conditions by the following code
snippet:

integrals_N = []
for i in boundary_conditions:

if ’Neumann’ in boundary_conditions[i]:
if boundary_conditions[i][’Neumann’] != 0:

g = boundary_conditions[i][’Neumann’]
integrals_N.append(g*v*ds(i))

Applying sum(integrals_N) will apply the + operator to the variational
forms in the integrals_N list and result in the integrals we need for the
right-hand side L of the variational form.

The integrals in the Robin condition can similarly be collected in lists:

integrals_R_a = []
integrals_R_L = []
for i in boundary_conditions:

if ’Robin’ in boundary_conditions[i]:
r, s = boundary_conditions[i][’Robin’]
integrals_R_a.append(r*u*v*ds(i))
integrals_R_L.append(r*s*v*ds(i))
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We are now in a position to define the a and L expressions in the variational
formulation:

a = kappa*dot(grad(u), grad(v))*dx + sum(integrals_R_a)
L = f*v*dx - sum(integrals_N) + sum(integrals_R_L)

Alternatively, we may use the FEniCS functions lhs and rhs as mentioned
above to simplify the extraction of terms for the Robin integrals:

integrals_R = []
for i in boundary_conditions:

if ’Robin’ in boundary_conditions[i]:
r, s = boundary_conditions[i][’Robin’]
integrals_R.append(r*(u - s)*v*ds(i))

F = kappa*dot(grad(u), grad(v))*dx + \
sum(integrals_R) - f*v*dx + sum(integrals_N)

a, L = lhs(F), rhs(F)

This time we can more naturally define the integrals from the Robin condition
as r*(u - s)*v*ds(i):

The complete code for this example can be found in the function solver_bc
in the program ft11_poisson_bcs.py.

4.4.5 Test problem

We will use the same exact solution ue = 1 +x2 + 2y2 as in Chapter 2, and
thus take κ = 1 and f = −6. Our domain is the unit square, and we assign
Dirichlet conditions at x= 0 and x= 1, a Neumann condition at y = 1, and
a Robin condition at y = 0. With the given ue, we realize that the Neumann
condition is −∂u/∂n = −∂u/∂y = 4y = 4, while the Robin condition can be
selected in many ways. Since ∂u/∂n = −∂u/∂y = 0 at y = 0, we can select
s= u and specify r 6= 0 arbitrarily in the Robin condition. We will set r= 1000
and s= u.

The boundary parts are thus Γ 0
D : x = 0, Γ 1

D : x = 1, Γ 0
R : y = 0, and Γ 0

N :
y = 1.

When implementing this test problem, and especially other test problems
with more complicated expressions, it is advantageous to use symbolic com-
puting. Below we define the exact solution as a sympy expression and derive
other functions from their mathematical definitions. Then we turn these ex-
pressions into C/C++ code, which can be fed into Expression objects.

# Define manufactured solution in sympy and derive f, g, etc.
import sympy as sym
x, y = sym.symbols(’x[0], x[1]’) # needed by UFL
u = 1 + x**2 + 2*y**2 # exact solution
u_e = u # exact solution
u_00 = u.subs(x, 0) # restrict to x = 0
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u_01 = u.subs(x, 1) # restrict to x = 1
f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
f = sym.simplify(f) # simplify f
g = -sym.diff(u, y).subs(y, 1) # compute g = -du/dn
r = 1000 # Robin data, arbitrary
s = u # Robin data, u = s
# Collect variables
variables = [u_e, u_00, u_01, f, g, r, s]
# Turn into C/C++ code strings
variables = [sym.printing.ccode(var) for var in variables]
# Turn into FEniCS Expression
variables = [Expression(var, degree=2) for var in variables]
# Extract variables
u_e, u_00, u_01, f, g, r, s = variables
# Define boundary conditions
boundary_conditions = {0: {’Dirichlet’: u_00}, # x=0

1: {’Dirichlet’: u_01}, # x=1
2: {’Robin’: (r, s)}, # y=0
3: {’Neumann’: g}} # y=1

This simple test problem is turned into a real unit test for different function
spaces in the function test_solver_bc.

4.4.6 Debugging boundary conditions

It is easy to make mistakes when implementing a problem with many dif-
ferent types of boundary conditions, as in the present case. Some helpful
debugging output is to run through all vertex coordinates and check if the
SubDomain.inside method marks the vertex as on the boundary. Another
useful printout is to list which degrees of freedom that are subject to Dirichlet
conditions, and for first-order Lagrange (P1) elements, add the corresponding
vertex coordinate to the output.

if debug:
# Print all vertices that belong to the boundary parts
for x in mesh.coordinates():

if bx0.inside(x, True): print(’%s is on x = 0’ % x)
if bx1.inside(x, True): print(’%s is on x = 1’ % x)
if by0.inside(x, True): print(’%s is on y = 0’ % x)
if by1.inside(x, True): print(’%s is on y = 1’ % x)

# Print the Dirichlet conditions
print(’Number of Dirichlet conditions:’, len(bcs))
if V.ufl_element().degree() == 1: # P1 elements

d2v = dof_to_vertex_map(V)
coor = mesh.coordinates()

for i, bc in enumerate(bcs):
print(’Dirichlet condition %d’ % i)
boundary_values = bc.get_boundary_values()
for dof in boundary_values:

print(’ dof %2d: u=%g’ % (dof, boundary_values[dof]))
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if V.ufl_element().degree() == 1:
print(’ at point %s’ %

(str(tuple(coor[d2v[dof]].tolist()))))

Calls to the inside method
In the code snippet above, we call the inside method for each mesh.coordinate();
i.e., for each vertex. We could also place a printout inside the inside
method. Then it will be surprising to see that this method is called not
only for the points assoicated with degrees of freedom. For P1 elements
the method is also called for each midpoint on each facet of the cells.
This is because a Dirichlet condition is by default set only if the entire
facet can be said to be subject to such a condition.

4.5 Generating meshes with subdomains

So far, we have worked mostly with simple meshes (the unit square) and
defined boundaries and subdomains in terms of simple geometric tests like
x = 0 or y ≤ 0.5. For more complex geometries, it is not realistic to specify
boundaries and subdomains in this way. Instead, the boundaries and subdo-
mains must be defined as part of the mesh generation process. We will now
look at how to use the FEniCS mesh generation tool mshr to generate meshes
and define subdomains.

4.5.1 PDE problem

We will again solve the Poisson equation, but this time for a different applica-
tion. Consider an iron cylinder with copper wires wound around the cylinder
as in Figure 4.2. Through the copper wires a static current J = 1A is flowing
and we want to compute the magnetic field B in the iron cylinder, the copper
wires, and the surrounding vacuum.

First, we simplify the problem to a 2D problem. We can do this by assum-
ing that the cylinder extends far along the z-axis and as a consequence the
field is virtually independent of the z-coordinate. Next, we consider Maxwell’s
equation to derive a Poisson equation for the magnetic field (or rather its po-
tential):
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Fig. 4.2 Cross-section of an iron cylinder with copper wires wound around the cylinder,
here with n = 8 windings. The inner circles are cross-sections of the copper wire coming
up (‘‘north”) and the outer circles are cross-sections of the copper wire going down into
the plane (“south”).

∇·D = %, (4.15)
∇·B = 0, (4.16)

∇×E =−∂B
∂t
, (4.17)

∇×H = ∂D

∂t
+J. (4.18)

Here, D is the displacement field, B is the magnetic field, E is the electric
field, and H is the magnetizing field. In addition to Maxwell’s equations, we
also need a constitutive relation between B and H,

B = µH, (4.19)

which holds for an isotropic linear magnetic medium. Here, µ is the mag-
netic permeability of the material. Now, since B is solenoidal (divergence
free) according to Maxwell’s equations, we know that B must be the curl of
some vector field A. This field is called the magnetic vector potential. Since
∂D/∂t= 0, it follows that
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J =∇×H =∇× (µ−1B) =∇× (µ−1∇×A) =−∇· (µ−1∇A). (4.20)

In the last step, we have expanded the second derivatives and used the gauge
freedom of A to simplify the equations to a simple vector-valued Poisson
problem for the magnetic vector potential; if B =∇×A, then B =∇× (A+
∇ψ) for any scalar field ψ (the gauge function). For the current problem, we
thus need to solve the following 2D Poisson problem for the z-component Az
of the magnetic vector potential:

−∇· (µ−1∇Az) = Jz in R2, (4.21)
lim

|(x,y)|→∞
Az = 0. (4.22)

Since we cannot solve this problem on an infinite domain, we will truncate
the domain using a large disk and set Az = 0 on the boundary. The current
Jz is set to +1A in the interior set of circles (copper wire cross-sections) and
to −1A in the exterior set of circles in Figure 4.2.

Once the magnetic vector potential has been computed, we can compute
the magnetic field B =B(x,y) by

B(x,y) =
(
∂Az
∂y

,−∂Az
∂x

)
. (4.23)

4.5.2 Variational formulation

The variational problem is derived as before by multiplying the PDE with a
test function v and integrating by parts. Since the boundary integral vanishes
due to the Dirichlet condition, we obtain∫

Ω
µ−1∇Az ·∇vdx=

∫
Ω
Jzvdx, (4.24)

or, in other words, a(Az,v) = L(v) with

a(Az,v) =
∫
Ω
µ−1∇Az ·∇vdx, (4.25)

L(v) =
∫
Ω
Jzvdx. (4.26)
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4.5.3 FEniCS implementation

The first step is to generate a mesh for the geometry described in Figure 4.2.
We let a and b be the inner and outer radii of the iron cylinder and let c1
and c2 be the radii of the two concentric distributions of copper wire cross-
sections. Furthermore, we let r be the radius of a copper wire, R be the
radius of our domain, and n be the number of windings (giving a total of
2n copper-wire cross-sections). This geometry can be described easily using
mshr and a little bit of Python programming:

# Define geometry for background
domain = Circle(Point(0, 0), R)

# Define geometry for iron cylinder
cylinder = Circle(Point(0, 0), b) - Circle(Point(0, 0), a)

# Define geometry for wires (N = North (up), S = South (down))
angles_N = [i*2*pi/n for i in range(n)]
angles_S = [(i + 0.5)*2*pi/n for i in range(n)]
wires_N = [Circle(Point(c_1*cos(v), c_1*sin(v)), r) for v in angles_N]
wires_S = [Circle(Point(c_2*cos(v), c_2*sin(v)), r) for v in angles_S]

The mesh that we generate will be a mesh of the entire disk with radius
R but we need the mesh generation to respect the internal boundaries de-
fined by the iron cylinder and the copper wires. We also want mshr to label
the subdomains so that we can easily specify material parameters (µ) and
currents. To do this, we use the mshr function set_subdomain as follows:

# Set subdomain for iron cylinder
domain.set_subdomain(1, cylinder)

# Set subdomains for wires
for (i, wire) in enumerate(wires_N):

domain.set_subdomain(2 + i, wire)
for (i, wire) in enumerate(wires_S):

domain.set_subdomain(2 + n + i, wire)

Once the subdomains have been created, we can generate the mesh:

mesh = generate_mesh(domain, 32)

A detail of the mesh is shown in Figure 4.3.
The mesh generated with mshr will contain information about the sub-

domains we have defined. To use this information in the definition of our
variational problem and subdomain-dependent parameters, we will need to
create a MeshFunction that marks the subdomains. This can be easily cre-
ated by a call to the member function mesh.domains(), which holds the
subdomain data generated by mshr:

markers = MeshFunction(’size_t’, mesh, 2, mesh.domains())
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Fig. 4.3 Plot of the mesh generated for the magnetostatics test problem. The subdo-
mains for the iron cylinder and copper wires are clearly visible

This line creates a MeshFunction with unsigned integer values (the subdo-
main numbers) with dimension 2, which is the cell dimension for this 2D
problem.

We can now use the markers as we have done before to redefine the inte-
gration measure dx:

dx = Measure(’dx’, domain=mesh, subdomain_data=markers)

Integrals over subdomains can then be expressed by dx(0), dx(1), and so
on. We use this to define the current Jz =±1A in the coppper wires:

J_N = Constant(1.0)
J_S = Constant(-1.0)
A_z = TrialFunction(V)
v = TestFunction(V)
a = (1 / mu)*dot(grad(A_z), grad(v))*dx
L_N = sum(J_N*v*dx(i) for i in range(2, 2 + n))
L_S = sum(J_S*v*dx(i) for i in range(2 + n, 2 + 2*n))
L = L_N + L_S

The permeability is defined as an Expression that depends on the sub-
domain number:

class Permeability(Expression):
def __init__(self, mesh, **kwargs):

self.markers = markers
def eval_cell(self, values, x, ufc_cell):

if markers[ufc_cell.index] == 0:
values[0] = 4*pi*1e-7 # vacuum

elif markers[ufc_cell.index] == 1:
values[0] = 1e-5 # iron (should really be 2.5e-1)
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else:
values[0] = -6.4e-6 # copper

mu = Permeability(mesh, degree=1)

As seen in this code snippet, we have used a somewhat less extreme value for
the magnetic permeability of iron. This is to make the solution a little more
interesting. It would otherwise be completely dominated by the field in the
iron cylinder.

Finally, when Az has been computed, we can compute the magnetic field:

W = VectorFunctionSpace(mesh, ’P’, 1)
B = project(as_vector((A_z.dx(1), -A_z.dx(0))), W)

We use as_vector() to interpret the tuple (A_z.dx(1), -A_z.dx(0)) as
a vector. The resulting plots of the magnetic vector potential and magnetic
field are shown in Figures 4.4 and 4.5.

Fig. 4.4 Plot of the z-component Az of the magnetic vector potential.

The complete code for computing the magnetic field follows below.

from fenics import *
from mshr import *
from math import sin, cos, pi

a = 1.0 # inner radius of iron cylinder
b = 1.2 # outer radius of iron cylinder
c_1 = 0.8 # radius for inner circle of copper wires
c_2 = 1.4 # radius for outer circle of copper wires
r = 0.1 # radius of copper wires
R = 5.0 # radius of domain
n = 10 # number of windings

# FIXME: Use ’domain’ instead of ’geometry’ in other examples

# Define geometry for background
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Fig. 4.5 Plot of the magnetic field B in the xy-plane.

domain = Circle(Point(0, 0), R)

# Define geometry for iron cylinder
cylinder = Circle(Point(0, 0), b) - Circle(Point(0, 0), a)

# Define geometry for wires (N = North (up), S = South (down))
angles_N = [i*2*pi/n for i in range(n)]
angles_S = [(i + 0.5)*2*pi/n for i in range(n)]
wires_N = [Circle(Point(c_1*cos(v), c_1*sin(v)), r) for v in angles_N]
wires_S = [Circle(Point(c_2*cos(v), c_2*sin(v)), r) for v in angles_S]

# Set subdomain for iron cylinder
domain.set_subdomain(1, cylinder)

# Set subdomains for wires
for (i, wire) in enumerate(wires_N):

domain.set_subdomain(2 + i, wire)
for (i, wire) in enumerate(wires_S):

domain.set_subdomain(2 + n + i, wire)
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# Create mesh
mesh = generate_mesh(domain, 32)

# FIXME: Remove when working
#File(’magnetostatics.xml.gz’) << mesh
#mesh = Mesh(’magnetostatics.xml.gz’)

# Define function space
V = FunctionSpace(mesh, ’P’, 1)

# Define boundary condition
bc = DirichletBC(V, Constant(0), ’on_boundary’)

# Define subdomain markers and integration measure
markers = MeshFunction(’size_t’, mesh, 2, mesh.domains())
dx = Measure(’dx’, domain=mesh, subdomain_data=markers)

# Define current densities
J_N = Constant(1.0)
J_S = Constant(-1.0)

# Define magnetic permeability
class Permeability(Expression):

def __init__(self, mesh, **kwargs):
self.markers = markers

def eval_cell(self, values, x, ufc_cell):
if markers[ufc_cell.index] == 0:

values[0] = 4*pi*1e-7 # vacuum
elif markers[ufc_cell.index] == 1:

values[0] = 1e-5 # iron (should really be 2.5e-1)
else:

values[0] = -6.4e-6 # copper

mu = Permeability(mesh, degree=1)

# Define variational problem
A_z = TrialFunction(V)
v = TestFunction(V)
a = (1 / mu)*dot(grad(A_z), grad(v))*dx
L_N = sum(J_N*v*dx(i) for i in range(2, 2 + n))
L_S = sum(J_S*v*dx(i) for i in range(2 + n, 2 + 2*n))
L = L_N + L_S

# Solve variational problem
A_z = Function(V)
solve(a == L, A_z, bc)

# Compute magnetic field (B = curl A)
W = VectorFunctionSpace(mesh, ’P’, 1)
B = project(as_vector((A_z.dx(1), -A_z.dx(0))), W)

# Plot solution
plot(A_z)
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plot(B)

# Save solution to file
vtkfile_A_z = File(’magneticpotential.pvd’)
vtkfile_B = File(’magneticfield.pvd’)
vtkfile_A_z << A_z
vtkfile_B << B

interactive()

The complete code can be found in the file ft12_magnetostatics.py.



Chapter 5
Extensions: Improving the Poisson
solver

The FEniCS programs we have written so far have been designed as flat Python
scripts. This works well for solving simple demo problems. However, when you
build a solver for an advanced application, you will quickly find the need for more
structured programming. In particular, you may want to reuse your solver to solve
a large number of problems where you vary the boundary conditions, the domain,
and coefficients such as material parameters. In this chapter, we will see how to
write general solver functions to improve the usability of FEniCS programs. We
will also discuss how to utilize iterative solvers with preconditioners for solving
linear systems and how to compute derived quantities, such as, e.g., the flux on a
part of the boundary.

5.1 Refactoring the Poisson solver

All programs created in this book so far are “flat”; that is, they are not
organized into logical, reusable units in terms of Python functions. Such flat
programs are useful for quickly testing out some software, but not well suited
for serious problem solving. We shall therefore look at how to refactor the
Poisson solver from Chapter 2. For a start, this means splitting the code into
functions, but this is just a reordering of the existing statements. During
refactoring, we also try make the functions we create as reusable as possible
in other contexts. We will also encapsulate statements specific to a certain
problem into (non-reusable) functions. Being able to distinguish reusable code
from specialized code is a key issue when refactoring code, and this ability
depends on a good mathematical understanding of the problem at hand (what
is general, what is special?). In a flat program, general and specialized code
(and mathematics) are often mixed together, which tends to give a blurred
understanding of the problem at hand.

c© 2016, Hans Petter Langtangen, Anders Logg.
Released under CC Attribution 4.0 license
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5.1.1 A more general solver function

We consider the flat program developed in Section 2.2. Some of the code in
this program is needed to solve any Poisson problem −∇2u = f on [0,1]×
[0,1] with u = uD on the boundary, while other statements arise from our
simple test problem. Let us collect the general, reusable code in a function
called solver. Our special test problem will then just be an application of
solver with some additional statements. We limit the solver function to
just compute the numerical solution. Plotting and comparing the solution
with the exact solution are considered to be problem-specific activities to be
performed elsewhere.

We parameterize solver by f , uD , and the resolution of the mesh. Since
it is so trivial to use higher-order finite element functions by changing the
third argument to FunctionSpace, we also add the polynomial degree of the
finite element function space as an argument to solver.

from fenics import *

def solver(f, u_D, Nx, Ny, degree=1):
"""
Solve -Laplace(u) = f on [0,1] x [0,1] with 2*Nx*Ny Lagrange
elements of specified degree and u = u_D (Expresssion) on
the boundary.
"""

# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, ’P’, degree)

# Define boundary condition
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, u_D, boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = dot(grad(u), grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

return u

The remaining tasks of our initial program, such as calling the solve
function with problem-specific parameters and plotting, can be placed in
a separate function. Here we choose to put this code in a function named
run_solver:
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def run_solver():
"Run solver to compute and post-process solution"

# Set up problem parameters and call solver
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)
f = Constant(-6.0)
u = solver(f, u_D, 8, 8, 1)

# Plot solution and mesh
u.rename(’u’, ’solution’)
plot(u)
plot(u.function_space().mesh())

# Save solution to file in VTK format
vtkfile = File(’poisson_solver/solution.pvd’)
vtkfile << u

The solution can now be computed, plotted, and saved to file by simply
calling the run_solver function.

5.1.2 Writing the solver as a Python module

The refactored code is put in a file ft03_poisson_solver.py. We should
make sure that such a file can be imported (and hence reused) in other pro-
grams. This means that all statements in the main program that are not
inside functions should appear within a test if __name__ == ’__main__’:.
This test is true if the file is executed as a program, but false if the file
is imported. If we want to run this file in the same way as we can run
ft03_poisson_solver.py, the main program is simply a call to run_solver()
followed by a call interactive() to hold the plot:

if __name__ == ’__main__’:
run_solver()
interactive()

The complete code can be found in the file ft03_poisson_solver.py.

5.1.3 Verification and unit tests

The remaining part of our first program is to compare the numerical and
the exact solutions. Every time we edit the code we must rerun the test
and examine that max_error is sufficiently small so we know that the code
still works. To this end, we shall adopt unit testing, meaning that we create
a mathematical test and corresponding software that can run all our tests
automatically and check that all tests pass. Python has several tools for unit
testing. Two very popular ones are pytest and nose. These are almost identical

https://github.com/hplgit/fenics-tutorial/blob/master/src/poisson/ft03_poisson_solver.py
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and very easy to use. More classical unit testing with test classes is offered by
the built-in module unittest, but here we are going to use pytest (or nose)
since that will result in shorter and clearer code.

Mathematically, our unit test is that the finite element solution of our
problem when f =−6 equals the exact solution u= uD = 1+x2 +2y2 at the
vertices of the mesh. We have already created a code that finds the error at
the vertices for our numerical solution. Because of rounding errors, we cannot
demand this error to be zero, but we have to use a tolerance, which depends
to the number of elements and the degrees of the polynomials in the finite
element basis functions. If we want to test that the solver function works
for meshes up to 2× (20×20) elements and cubic Lagrange elements, 10−10

is an appropriate tolerance for testing that the maximum error vanishes (see
Section 2.3).

To make our test case work together with pytest and nose, we have to
make a couple of small adjustments to our program. The simple rule is that
each test must be placed in a function that

• has a name starting with test_,
• has no arguments, and
• implements a test expressed as assert success, msg.

Regarding the last point, success is a boolean expression that is False if
the test fails, and in that case the string msg is written to the screen. When
the test fails, assert raises an AssertionError exception in Python, and
otherwise runs silently. The msg string is optional, so assert success is the
minimal test. In our case, we will write assert max_error < tol, where tol
is the tolerance mentioned above.

A proper test function for implementing this unit test in the pytest or nose
testing frameworks has the following form. Note that we perform the test for
different mesh resolutions and degrees of finite elements.

def test_solver():
"Test solver by reproducing u = 1 + x^2 + 2y^2"

# Set up parameters for testing
tol = 1E-10
u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)
f = Constant(-6.0)

# Iterate over mesh sizes and degrees
for Nx, Ny in [(3, 3), (3, 5), (5, 3), (20, 20)]:

for degree in 1, 2, 3:
print(’Solving on a 2 x (%d x %d) mesh with P%d elements.’

% (Nx, Ny, degree))

# Compute solution
u = solver(f, u_D, Nx, Ny, degree)

# Extract the mesh
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mesh = u.function_space().mesh()

# Compute maximum error at vertices
vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - \

vertex_values_u))

# Check maximum error
msg = ’error_max = %g’ % error_max
assert error_max < tol, msg

if __name__ == ’__main__’:
run_solver()
interactive()

To run the test, we type the following command:
Terminal

Terminal> py.test ft03_poisson_solver.py

This will run all functions test_*() (currently only the test_solver func-
tion) found in the file and report the results. For more verbose output, add
the flags -s -v.

We shall make it a habit in the following test to encapsulate numerical test
problems in unit tests as done above, and we strongly encourage the reader
to create similar unit tests whenever a FEniCS solver is implemented.

Tip: Print messages in test functions

The assert statement runs silently when the test passes so users may
become uncertain if all the statements in a test function are really
executed. A psychological help is to print out something before assert
(as we do in the example above) such that it is clear that the test really
takes place. Note that py.test needs the -s option to show printout
from the test functions.

5.1.4 Parameterizing the number of space dimensions

FEniCS makes it is easy to write a unified simulation code that can operate
in 1D, 2D, and 3D. We will conveniently make use of this feature in forth-
coming examples. As an appetizer, go back to the introductory programs
ft01_poisson.py or ft03_poisson_solver.py and change the mesh con-
struction from UnitSquareMesh(16, 16) to UnitCubeMesh(16, 16, 16).
Now the domain is the unit cube partitioned into 16× 16× 16 boxes, and
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each box is divided into six tetrahedron-shaped finite elements for computa-
tions. Run the program and observe that we can solve a 3D problem without
any other modifications (!). The visualization allows you to rotate the cube
and observe the function values as colors on the boundary.

If we want to parameterize the creation of unit interval, unit square, or
unit cube over dimension, we can do so by encapsulating this part of the
code in a function. Given a list or tuple with the divisions into cells in the
various spatial coordinates, the following function returns the mesh for a
d-dimensional cube:

def UnitHyperCube(divisions):
mesh_classes = [UnitIntervalMesh, UnitSquareMesh, UnitCubeMesh]
d = len(divisions)
mesh = mesh_classes[d-1](*divisions)
return mesh

The construction mesh_class[d-1] will pick the right name of the object
used to define the domain and generate the mesh. Moreover, the argument
*divisions sends all the components of the list divisions as separate ar-
guments to the constructor of the mesh construction class picked out by
mesh_class[d-1]. For example, in a 2D problem where divisions has two
elements, the statement

mesh = mesh_classes[d-1](*divisions)

is equivalent to

mesh = UnitSquareMesh(divisions[0], divisions[1])

The solver function from ft03_poisson_solver.py may be modified
to solve d-dimensional problems by replacing the Nx and Ny parameters by
divisions, and calling the function UnitHyperCube to create the mesh. Note
that UnitHyperCube is a function and not a class, but we have named it with
CamelCase to make it look like a class:

mesh = UnitHyperCube(divisions)

Exercise 5.1: Solve a Poisson problem

Solve the following problem

∇2u= 2e−2x sin(πy)((4−5π2)sin(2πx)−8π cos(2πx)) in Ω = [0,1]× [0,1]
(5.1)

u= 0 on ∂Ω (5.2)

The exact solution is given by
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u(x,y) = 2e−2x sin(πx)sin(πy) .

Compute the maximum numerical approximation error in a mesh with
2(Nx×Ny) elements and in a mesh with double resolution: 4(Nx×Ny) ele-
ments. Show that the doubling the resolution reduces the error by a factor 4
when using Lagrange elements of degree one. Make an illustrative plot of the
solution too.

a) Base your implementation on editing the program ft01_poisson.py.

Hint 1. In the string for an Expression object, pi is the value of π. Also
note that π2 must be expressed with syntax pow(pi,2) and not (the common
Python syntax) pi**2.

FEniCS will abort with a compilation error if you type the expressions in a
wrong way syntax-wise. Search for error: in the /very/long/path/compile.log
file mentioned in the error message to see what the C++ compiler reported
as error in the expressions.

Hint 2. The result that with P1 elements, doubling the resolution reduces the
error with a factor of four, is an asymptotic result so it requires a sufficiently
fine mesh. Here one may start with Nx =Ny = 20.
Filename: poisson_fsin_flat.

Solution. Looking at the ft01_poisson.py code, we realize that the fol-
lowing edits are required:

• Modify the mesh computation.
• Modify u_b and f.
• Add expression for the exact solution.
• Modify the computation of the numerical error.
• Insert a loop to enable solving the problem twice.
• Put the error reduction computation and the plot statements after the

loop.

Here is the modified code:

from fenics import *

Nx = Ny = 20
error = []
for i in range(2):

Nx *= (i+1)
Ny *= (i+1)

# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, ’Lagrange’, 1)

# Define boundary conditions
u0 = Constant(0)
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def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression(’-2*exp(-2*x[0])*sin(pi*x[1])*(’

’(4-5*pow(pi,2))*sin(2*pi*x[0]) ’
’ - 8*pi*cos(2*pi*x[0]))’)

# Note: no need for pi=DOLFIN_PI in f, pi is valid variable
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

# Compute solution
u = Function(V)
solve(a == L, u, bc)

u_e = Expression(
’2*exp(-2*x[0])*sin(2*pi*x[0])*sin(pi*x[1])’)

u_e_Function = interpolate(u_e, V) # exact solution
u_e_array = u_e_Function.vector().array() # dof values
max_error = (u_e_array - u.vector().array()).max()
print(’max error:’, max_error, ’%dx%d mesh’ % (Nx, Ny))
error.append(max_error)

print(’Error reduction:’, error[1]/error[0])

# Plot solution and mesh
plot(u)

# Dump solution to file in VTK format
file = File("poisson.pvd")
file << u

# Hold plot
interactive()

The number π has the symbol M_PI in C and C++, but in C++ strings
in Expression objects, the symbol pi can be used directly (or one can use
the less readable DOLFIN_PI).
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b) Base your implementation on a new file that imports functionality from
the module ft03_poisson_solver.py. Embed the check of the reduction of
the numerical approximation error in a unit test. Filename: poisson_fsin_func.

Solution. Solving the two problems is a matter of calling solver with dif-
ferent sets of arguments. To compute the numerical error, we need code that
is close to what we have in test_solver.

from poisson_solver import (
solver, Expression, Constant, interpolate, File, plot,
interactive)

def data():
"""Return data for this Poisson problem."""
u0 = Constant(0)
u_e = Expression(

’2*exp(-2*x[0])*sin(2*pi*x[0])*sin(pi*x[1])’)
f = Expression(’-2*exp(-2*x[0])*sin(pi*x[1])*(’

’(4-5*pow(pi,2))*sin(2*pi*x[0]) ’
’ - 8*pi*cos(2*pi*x[0]))’)

return u0, f, u_e

def test_solver():
"""Check convergence rate of solver."""
u0, f, u_e = data()
Nx = 20
Ny = Nx
error = []
# Loop over refined meshes
for i in range(2):

Nx *= i+1
Ny *= i+1
print(’solving on 2(%dx%d) mesh’ % (Nx, Ny))
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u = solver(f, u0, Nx, Ny, degree=1)
# Make a finite element function of the exact u_e
V = u.function_space()
u_e_array = interpolate(u_e, V).vector().array()
max_error = (u_e_array - u.vector().array()).max() # Linf norm
error.append(max_error)
print(’max error:’, max_error)

for i in range(1, len(error)):
error_reduction = error[i]/error[i-1]
print(’error reduction:’, error_reduction)
assert abs(error_reduction - 0.25) < 0.1

def application():
"""Plot the solution."""
u0, f, u_e = data()
Nx = 40
Ny = Nx
u = solver(f, u0, Nx, Ny, 1)
# Dump solution to file in VTK format
file = File("poisson.pvd")
file << u
# Plot solution and mesh
plot(u)

if __name__ == ’__main__’:
test_solver()
application()
# Hold plot
interactive()

The unit test is embedded in a proper test function test_solver for the
pytest or nose testing frameworks. Visualization of the solution is encapsu-
lated in the application function. Since we need u_e, u_b, and f in two
functions, we place the definitions in a function data to avoid copies of these
expressions.

Remarks. This exercise demonstrates that changing a flat program to solve
a new problem requires careful editing of statements scattered around in
the file, while the solution in b), based on the solver function, requires no
modifications of the ft03_poisson_solver.py file, just minimalistic addi-
tional new code in a separate file. The Poisson solver remains in one place
(ft03_poisson_solver.py) while in a) we got two Poisson solvers. If you
decide to switch to an iterative solution method for linear systems, you can
do so in one place in b), and all applications can take advantage of the exten-
sion. Hopefully, with this exercise you realize that embedding PDE solvers in
functions (or classes) makes more reusable software than flat programs.
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Exercise 5.2: Refactor the code for membrane deflection

The ft02_poisson_membrane.py program simulates the deflection of a mem-
brane. Refactor this code such that we have a solver function as in the pro-
gram with name ft03_poisson_solver.py. Let the user have the option to
choose a direct or iterative solver for the linear system. Also implement a
unit test where you have p = 4 (constant) and use P2 and P3 elements. In
this case, the exact solution is quadratic in x and y and will be “exactly”
reproduced by P2 and higher-order elements.
Solution. We can use the solver function from ft03_poisson_solver.py
right away. The major difference is that the domain is now a circle and not a
square. We change the solver function by letting the mesh be an argument
mesh (instead of Nx and Ny):

def solver(
f, u_b, mesh, degree=1,
linear_solver=’Krylov’, # Alt: ’direct’
...):
V = FunctionSpace(mesh, ’P’, degree)
# code as before

The complete code becomes

def application(beta, R0, num_elements_radial_dir):
# Scaled pressure function
p = Expression(

’4*exp(-pow(beta,2)*(pow(x[0], 2) + pow(x[1]-R0, 2)))’,
beta=beta, R0=R0)

# Generate mesh over the unit circle
domain = Circle(Point(0.0, 0.0), 1.0)
mesh = generate_mesh(domain, num_elements_radial_dir)

w = solver(p, Constant(0), mesh, degree=1,
linear_solver=’direct’)

w.rename(’w’, ’deflection’) # set name and label (description)

# Plot scaled solution, mesh and pressure
plot(mesh, title=’Mesh over scaled domain’)
plot(w, title=’Scaled ’ + w.label())
V = w.function_space()
p = interpolate(p, V)
p.rename(’p’, ’pressure’)
plot(p, title=’Scaled ’ + p.label())

# Dump p and w to file in VTK format
vtkfile1 = File(’membrane_deflection.pvd’)
vtkfile1 << w
vtkfile2 = File(’membrane_load.pvd’)
vtkfile2 << p

The key function to simulate membrane deflection is named application.



128 5 Extensions: Improving the Poisson solver

For p= 4, we have w = 1−x2−y2 as exact solution. The unit test for P2
and P3 goes as follows:

def test_membrane():
"""Verification for constant pressure."""
p = Constant(4)
# Generate mesh over the unit circle
domain = Circle(Point(0.0, 0.0), 1.0)
for degree in 2, 3:

print(’********* P%d elements:’ % degree)
n = 5
for i in range(4): # Run some resolutions

n *= (i+1)
mesh = generate_mesh(domain, n)
#info(mesh)
w = solver(p, Constant(0), mesh, degree=degree,

linear_solver=’direct’)
print(’max w: %g, w(0,0)=%g, h=%.3E, dofs=%d’ %

(w.vector().array().max(), w((0,0)),
1/np.sqrt(mesh.num_vertices()),
w.function_space().dim()))

w_exact = Expression(’1 - x[0]*x[0] - x[1]*x[1]’)
w_e = interpolate(w_exact, w.function_space())
error = np.abs(w_e.vector().array() -

w.vector().array()).max()
print(’error: %.3E’ % error)
assert error < 9.61E-03

def application2(
beta, R0, num_elements_radial_dir):
"""Explore more built-in visulization features."""
# Scaled pressure function
p = Expression(

’4*exp(-pow(beta,2)*(pow(x[0], 2) + pow(x[1]-R0, 2)))’,
beta=beta, R0=R0)

# Generate mesh over the unit circle
domain = Circle(Point(0.0, 0.0), 1.0)
mesh = generate_mesh(domain, num_elements_radial_dir)

w = solver(p, Constant(0), mesh, degree=1,
linear_solver=’direct’)

w.rename(’w’, ’deflection’)

# Plot scaled solution, mesh and pressure
plot(mesh, title=’Mesh over scaled domain’)
viz_w = plot(w,

wireframe=False,
title=’Scaled membrane deflection’,
axes=False,
interactive=False,
)

viz_w.elevate(-10) # adjust (lift) camera from default view
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viz_w.plot(w) # bring new settings into action
viz_w.write_png(’deflection’)
viz_w.write_pdf(’deflection’)

V = w.function_space()
p = interpolate(p, V)
p.rename(’p’, ’pressure’)
viz_p = plot(p, title=’Scaled pressure’, interactive=False)
viz_p.elevate(-10)
viz_p.plot(p)
viz_p.write_png(’pressure’)
viz_p.write_pdf(’pressure’)

# Dump w and p to file in VTK format
vtkfile1 = File(’membrane_deflection.pvd’)
vtkfile1 << w
vtkfile2 = File(’membrane_load.pvd’)
vtkfile2 << p

The striking feature is that the solver does not reproduce the solution to an
accuracy more than about 0.01 (!), regardless of the resolution and type of
element.
Filename: membrane_func.

5.2 Working with linear solvers

Sparse LU decomposition (Gaussian elimination) is used by default to solve
linear systems of equations in FEniCS programs. This is a very robust and
simple method. It is the recommended method for systems with up to a few
thousand unknowns and may hence be the method of choice for many 2D
and smaller 3D problems. However, sparse LU decomposition becomes slow
and one quickly runs out of memory for larger problems. For large problems,
we instead need to use iterative methods which are faster and require much
less memory. We will now look at how to take advantage of state-of-the-art
iterative solution methods in FEniCS.

5.2.1 Controlling the solution process

Choosing a linear solver and preconditioner. Preconditioned Krylov
solvers is a type of popular iterative methods that are easily accessible in FEn-
iCS programs. The Poisson equation results in a symmetric, positive definite
system matrix, for which the optimal Krylov solver is the Conjugate Gra-
dient (CG) method. However, the CG method requires boundary conditions
to be implemented in a symmetric way. This is not the case by default, so
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then a Krylov solver for non-symmetric system, such as GMRES, is a better
choice. Incomplete LU factorization (ILU) is a popular and robust all-round
preconditioner, so let us try the GMRES-ILU pair:

solve(a == L, u, bc)
solver_parameters={’linear_solver’: ’gmres’,

’preconditioner’: ’ilu’})
# Alternative syntax
solve(a == L, u, bc,

solver_parameters=dict(linear_solver=’gmres’,
preconditioner=’ilu’))

Section 5.2.2 lists the most popular choices of Krylov solvers and precondi-
tioners available in FEniCS.

Choosing a linear algebra backend. The actual GMRES and ILU im-
plementations that are brought into action depend on the choice of linear
algebra package. FEniCS interfaces several linear algebra packages, called
linear algebra backends in FEniCS terminology. PETSc is the default choice
if FEniCS is compiled with PETSc. If PETSc is not available, then FEniCS
falls back to using the Eigen backend. The linear algebra backend in FEniCS
can be set using the following command:

parameters[’linear_algebra_backend’] = backendname

where backendname is a string. To see which linear algebra backends are avail-
able, you can call the FEniCS function list_linear_algebra_backends().
Similarly, one may check which linear algebra backend is currently being used
by the following command:

print parameters[’linear_algebra_backend’]

# Alternative syntax for Python 3
print(parameters[’linear_algebra_backend’])

Setting solver parameters. We will normally want to control the toler-
ance in the stopping criterion and the maximum number of iterations when
running an iterative method. Such parameters can be controlled at both a
global and a local level. We will start by looking at how to set global parame-
ters. For more advanced programs, one may want to use a number of different
linear solvers and set different tolerances and other parameters. Then it be-
comes important to control the parameters at a local level. We will return to
this issue in Section 5.2.3.

Changing a parameter in the global FEniCS parameter database affects all
linear solvers (created after the parameter has been set). The global FEniCS
parameter database is simply called parameters and it behaves as a nested
dictionary. Write

info(parameters, verbose=True)
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to list all parameters and their default values in the database. The nesting of
parameter sets is indicated through indentation in the output from info. Ac-
cording to this output, the relevant parameter set is named ’krylov_solver’,
and the parameters are set like this:

prm = parameters[’krylov_solver’] # short form
prm[’absolute_tolerance’] = 1E-10
prm[’relative_tolerance’] = 1E-6
prm[’maximum_iterations’] = 1000

Stopping criteria for Krylov solvers usually involve the norm of the residual,
which must be smaller than the absolute tolerance parameter or smaller than
the relative tolerance parameter times the initial residual.

We remark that default values for the global parameter database can be
defined in an XML file. To generate such a file from the current set of pa-
rameters in a program, run

File(’fenics_parameters.xml’) << parameters

If a fenics_parameters.xml file is found in the directory where a FEniCS
program is run, this file is read and used to initialize the parameters object.
Otherwise, the file .config/fenics/fenics_parameters.xml in the user’s
home directory is read, if it exists. Another alternative is to load the XML
file (with any name) manually in the program:

File(’fenics_parameters.xml’) >> parameters

The XML file can also be in gzip’ed form with the extension .xml.gz.

An extended solver function. Wemay extend the previous solver function
from ft03_poisson_solver.py in Section 5.1.1 such that it also offers the
GMRES+ILU preconditioned Krylov solver:

def solver(
f, u_b, Nx, Ny,
degree=1, # Polynomial degree of function space
linear_solver=’Krylov’, # Linear solver method (alt: ’direct’)
abs_tol=1E-5, # Absolute tolerance in Krylov solver
rel_tol=1E-3, # Relative tolerance in Krylov solver
max_iter=1000, # Max iterations in Krylov solver
log_level=PROGRESS, # Amount of solver output
print_parameters=False, # Print solver parameters to screen?
):
...
# Set up variational problem: a, L, declare u, etc.

if linear_solver == ’Krylov’:
prm = parameters[’krylov_solver’]
prm[’absolute_tolerance’] = abs_tol
prm[’relative_tolerance’] = rel_tol
prm[’maximum_iterations’] = max_iter
print(parameters[’linear_algebra_backend’])
set_log_level(log_level)
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if print_parameters:
info(parameters, True)

solver_parameters = {’linear_solver’: ’gmres’,
’preconditioner’: ’ilu’}

else:
solver_parameters = {’linear_solver’: ’lu’}

solve(a == L, u, bc, solver_parameters=solver_parameters)
return u

This new solver function, found in the file ft14_poisson_iterative.py,
replaces the one in ft03_poisson_solver.py: it has all the functionality
of the previous solver function, but can also solve the linear system with
iterative methods and report the progress of such solvers.

A remark regarding unit tests. Regarding verification of the new solver
function in terms of unit tests, it turns out that unit testing for a problem
where the approximation error vanishes gets more complicated when we use
iterative methods. The problem is to keep the error due to iterative solution
smaller than the tolerance used in the verification tests. First of all, this
means that the tolerances used in the Krylov solvers must be smaller than the
tolerance used in the assert test, but this is no guarantee to keep the linear
solver error this small. For linear elements and small meshes, a tolerance of
10−11 works well in the case of Krylov solvers too (using a tolerance 10−12 in
those solvers). However, as soon as we switch to P2 elements, it is hard to force
the linear solver error below 10−6. Consequently, tolerances in tests depend
on the numerical method being used. The interested reader is referred to
the test_solver function in ft14_poisson_iterative.py for details: this
function tests the numerical solution for direct and iterative linear solvers,
for different meshes, and different degrees of the polynomials in the finite
element basis functions.

5.2.2 List of linear solver methods and preconditioners

Which linear solvers and preconditioners that are available in FEniCS de-
pends on how FEniCS has been configured and which linear algebra backend
is currently active. The following table shows an example of which linear
solvers that can be available through FEniCS when the PETSc backend is
active:
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Name Method

’bicgstab’ Biconjugate gradient stabilized method
’cg’ Conjugate gradient method
’gmres’ Generalized minimal residual method
’minres’ Minimal residual method
’petsc’ PETSc built in LU solver
’richardson’ Richardson method
’superlu_dist’ Parallel SuperLU
’tfqmr’ Transpose-free quasi-minimal residual method
’umfpack’ UMFPACK

The set of available preconditioners also depends on configuration and linear
algebra backend. The following table shows an example of which precondi-
tioners may be available:

Name Method

’icc’ Incomplete Cholesky factorization
’ilu’ Incomplete LU factorization
’petsc_amg’ PETSc algebraic multigrid
’sor’ Successive over-relaxation

An up-to-date list of the available solvers and preconditioners for your FEn-
iCS installation can be produced by

list_linear_solver_methods()
list_krylov_solver_preconditioners()

5.2.3 Linear variational problem and solver objects

The FEniCS interface allows different ways to access the core functionality,
ranging from very high-level to low-level access. So far, we have mostly used
the high-level call solve(a == L, u, bc) to solve a variational problem a
== L with a certain boundary condition bc. However, sometimes you may
need more fine-grained control over the solution process. In particular, the call
to solve will create certain objects that are thrown away after the solution
has been computed, and it may be practical or efficient to reuse those objects.

In this section, we will look at an alternative interface to solving linear vari-
ational problems in FEniCS, which may be preferable in many situations com-
pared to the high-level solve function interface. This interface uses the two
classes LinearVariationalProblem and LinearVariationalSolver. Using
this interface, the equivalent of solve(a == L, u, bc) looks as follows:

u = Function(V)
problem = LinearVariationalProblem(a, L, u, bc)
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solver = LinearVariationalSolver(problem)
solver.solve()

Many FEniCS objects have an attribute parameters corresponding to a
parameter set in the global parameters database, but local to the object.
Here, solver.parameters play that role. Setting the CG method with ILU
preconditioning as the solution method and specifying solver-specific param-
eters can be done like this:

solver.parameters[’linear_solver’] = ’gmres’
solver.parameters[’preconditioner’] = ’ilu’
prm = solver.parameters[’krylov_solver’] # short form
prm[’absolute_tolerance’] = 1E-7
prm[’relative_tolerance’] = 1E-4
prm[’maximum_iterations’] = 1000

Settings in the global parameters database are propagated to parameter sets
in individual objects, with the possibility of being overwritten as above. Note
that global parameter values can only affect local parameter values if set
before the time of creation of the local object. Thus, changing the value of
the tolerance in the global parameter database will not affect the parameters
for already created solvers.

The linear variational problem and solver objects as outlined above are
incorporated in an alternative solver function, named solver_objects, in
ft14_poisson_iterative.py. Otherwise, this function is similar to the pre-
viously shown solver function.

5.2.4 Explicit assembly and solve

As we saw already in Section 3.4, linear variational problems can be as-
sembled explicitly in FEniCS into matrices and vectors using the assemble
function. This allows even more fine-grained control of the solution pro-
cess compared to using the high-level solve function or using the classes
LinearVariationalProblem and LinearVariationalSolver. We will now
look more closely into how to use the assemble function and how to combine
this with low-level calls for solving the assembled linear systems.

Given a variational problem a(u,v) = L(v), the discrete solution u is com-
puted by inserting u=

∑N
j=1Ujφj into a(u,v) and demanding a(u,v) = L(v)

to be fulfilled for N test functions φ̂1, . . . , φ̂N . This implies

N∑
j=1

a(φj , φ̂i)Uj = L(φ̂i), i= 1, . . . ,N,

which is nothing but a linear system,
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AU = b,

where the entries of A and b are given by

Aij = a(φj , φ̂i),
bi = L(φ̂i) .

The examples so far have specified the left- and right-hand sides of the
variational formulation and then asked FEniCS to assemble the linear system
and solve it. An alternative is to explicitly call functions for assembling the
coefficient matrix A and the right-hand side vector b, and then solve the
linear system AU = b for the vector U . Instead of solve(a == L, U, b) we
now write

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u = Function(V)
U = u.vector()
solve(A, U, b)

The variables a and L are the same as before; that is, a refers to the bilinear
form involving a TrialFunction object u and a TestFunction object v, and
L involves the same TestFunction object v. From a and L, the assemble
function can compute A and b.

Creating the linear system explicitly in a program can have some advan-
tages in more advanced problem settings. For example, A may be constant
throughout a time-dependent simulation, so we can avoid recalculating A at
every time level and save a significant amount of simulation time.

The matrix A and vector b are first assembled without incorporating es-
sential (Dirichlet) boundary conditions. Thereafter, the call bc.apply(A,
b) performs the necessary modifications of the linear system such that u is
guaranteed to equal the prescribed boundary values. When we have multiple
Dirichlet conditions stored in a list bcs, we must apply each condition in bcs
to the system:

for bc in bcs:
bc.apply(A, b)

# Alternative syntax using list comprehension
[bc.apply(A, b) for bc in bcs]

Alternatively, we can use the function assemble_system, which takes the
boundary conditions into account during the assembly of the matrix and
vector:

A, b = assemble_system(a, L, bcs)
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The assemble_system function is preferable to the combination of assemble
and bc.apply when the linear system is symmetric, since assemble_system
will incorporate the boundary conditions in a symmetric way. Even if the
matrix A that comes out of the call to assemble is symmetric (for a symmetric
bilinear form a), the call to bc.apply will break the symmetry.

Once the linear system has been assembled, we need to compute the so-
lution U = A−1b and store the solution U in the vector U = u.vector().
In the same way as linear variational problems can be programmed us-
ing different interfaces in FEniCS—the high-level solve function, the class
LinearVariationalSolve, and the low-level assemble function—linear sys-
tems can also be programmed using different interfaces in FEniCS. The high-
level interface to solving a linear system in FEniCS is also named solve:

solve(A, U, b)

By default, solve(A, U, b) uses sparse LU decomposition to compute
the solution. Specification of an iterative solver and preconditioner can be
made through two optional arguments:

solve(A, U, b, ’cg’, ’ilu’)

Appropriate names of solvers and preconditioners are found in Section 5.2.2.
This high-level interface is useful for many applications, but sometimes

more fine-grained control is needed. One can then create one or more
KrylovSolver objects that are then used to solve linear systems. Each differ-
ent solver object can have its own set of parameters and selection of iterative
method and preconditioner. Here is an example:

solver = KrylovSolver(’cg’, ’ilu’)
prm = solver.parameters
prm[’absolute_tolerance’] = 1E-7
prm[’relative_tolerance’] = 1E-4
prm[’maximum_iterations’] = 1000
u = Function(V)
U = u.vector()
solver.solve(A, U, b)

The function solver_linalg in the program file ft14_poisson_iterative.py
implements a solver function where the user can choose between different
types of assembly. The function demo_linalg runs a test problem on a se-
quence of meshes and solves the problem with symmetric and non-symmetric
modification of the system matrix. One can monitor the number of Krylov
method iterations and realize that with a symmetric coefficient matrix, the
Conjugate Gradient method requires slightly fewer iterations than GMRES
in the non-symmetric case. Taking into account that the Conjugate Gradient
method has less work per iteration, there is some efficiency to be gained by
using assemble_system for this problem.

The choice of start vector for the iterations in a linear solver is often
important. By default, the values of u and thus the vector U = u.vector()
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will be initialized to zero. If we instead wanted to initialize U with random
numbers in the interval [−100,100] this can be done as follows:

n = u.vector().array().size
U = u.vector()
U[:] = numpy.random.uniform(-100, 100, n)
solver.parameters[’nonzero_initial_guess’] = True
solver.solve(A, U, b)

Note that we must both turn off the default behavior of setting the start
vector (“initial guess”) to zero, and also set the values of the vector U to
nonzero values.

Using a nonzero initial guess can be particularly important for time-
dependent problems or when solving a linear system as part of a nonlinear
iteration, since then the previous solution vector U will often be a good ini-
tial guess for the solution in the next time step or iteration. In this case, the
values in the vector U will naturally be initialized with the previous solution
vector (if we just used it to solve a linear system), so the only extra step
necessary is to set the parameter nonzero_initial_guess to True.

5.2.5 Examining matrix and vector values

When calling A = assemble(a) and b = assemble(L), the object A will be
of type Matrix, while b and u.vector() are of type Vector. To examine
the values, we may convert the matrix and vector data to numpy arrays by
calling the array() method as shown before. For example, if you wonder how
essential boundary conditions are incorporated into linear systems, you can
print out A and b before and after the bc.apply(A, b) call:

A = assemble(a)
b = assemble(L)
if mesh.num_cells() < 16: # print for small meshes only

print(A.array())
print(b.array())

bc.apply(A, b)
if mesh.num_cells() < 16:

print(A.array())
print(b.array())

With access to the elements in A through a numpy array, we can easily per-
form computations on this matrix, such as computing the eigenvalues (using
the eig function in numpy.linalg). We can alternatively dump A.array()
and b.array() to file in MATLAB format and invoke MATLAB or Octave to
analyze the linear system. Dumping the arrays to MATLAB format is done
by

import scipy.io
scipy.io.savemat(’Ab.mat’, {’A’: A.array(), ’b’: b.array()})



138 5 Extensions: Improving the Poisson solver

Writing load Ab.mat in MATLAB or Octave will then make the array vari-
ables A and b available for computations.

Matrix processing in Python or MATLAB/Octave is only feasible for
small PDE problems since the numpy arrays or matrices in MATLAB file
format are dense matrices. FEniCS also has an interface to the eigensolver
package SLEPc, which is the preferred tool for computing the eigenvalues
of large, sparse matrices of the type encountered in PDE problems (see
demo/documented/eigenvalue in the FEniCS source code tree for a demo).

5.2.6 Examining the degrees of freedom

We have seen before how to grab the degrees of freedom array from a finite
element function u:

nodal_values = u.vector().array()

For a finite element function from a standard continuous piecewise linear
function space (P1 Lagrange elements), these values will be the same as the
values we get by the following statement:

vertex_values = u.compute_vertex_values(mesh)

Both nodal_values and vertex_values will be numpy arrays and they will
be of the same length and contain the same values, but with possibly dif-
ferent ordering. The array vertex_values will have the same ordering as
the vertices of the mesh, while nodal_values will be ordered in a way that
(nearly) minimizes the bandwidth of the system matrix and thus improves
the efficiency of linear solvers.

A fundamental question is: what are the coordinates of the vertex whose
value is nodal_values[i]? To answer this question, we need to understand
how to get our hands on the coordinates, and in particular, the numbering
of degrees of freedom and the numbering of vertices in the mesh.

The function mesh.coordinates() returns the coordinates of the vertices
as a numpy array with shape (M,d), M being the number of vertices in the
mesh and d being the number of space dimensions:

>>> from fenics import *
>>>
>>> mesh = UnitSquareMesh(2, 2)
>>> coordinates = mesh.coordinates()
>>> coordinates
array([[ 0. , 0. ],

[ 0.5, 0. ],
[ 1. , 0. ],
[ 0. , 0.5],
[ 0.5, 0.5],
[ 1. , 0.5],
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[ 0. , 1. ],
[ 0.5, 1. ],
[ 1. , 1. ]])

We see from this output that for this particular mesh, the vertices are first
numbered along y = 0 with increasing x coordinate, then along y = 0.5, and
so on.

Next we compute a function u on this mesh. Let’s take u= x+y:

>>> V = FunctionSpace(mesh, ’P’, 1)
>>> u = interpolate(Expression(’x[0] + x[1]’), V)
>>> plot(u, interactive=True)
>>> nodal_values = u.vector().array()
>>> nodal_values
array([ 1. , 0.5, 1.5, 0. , 1. , 2. , 0.5, 1.5, 1. ])

We observe that nodal_values[0] is not the value of x+ y at vertex num-
ber 0, since this vertex has coordinates x = y = 0. The numbering of the
nodal values (degrees of freedom) U1, . . . ,UN is obviously not the same as the
numbering of the vertices.

Note that we may examine the vertex numbering in the plot window. We
type w to turn on wireframe instead of a fully colored surface, m to show the
mesh, and then v to show the numbering of the vertices.
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Let’s instead examine the values we get by calling u.compute_vertex_values():

>>> vertex_values = u.compute_vertex_values()
>>> for i, x in enumerate(coordinates):
... print(’vertex %d: vertex_values[%d] = %g\tu(%s) = %g’ %
... (i, i, vertex_values[i], x, u(x)))
vertex 0: vertex_values[0] = 0 u([ 0. 0.]) = 8.46545e-16
vertex 1: vertex_values[1] = 0.5 u([ 0.5 0. ]) = 0.5
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vertex 2: vertex_values[2] = 1 u([ 1. 0.]) = 1
vertex 3: vertex_values[3] = 0.5 u([ 0. 0.5]) = 0.5
vertex 4: vertex_values[4] = 1 u([ 0.5 0.5]) = 1
vertex 5: vertex_values[5] = 1.5 u([ 1. 0.5]) = 1.5
vertex 6: vertex_values[6] = 1 u([ 0. 1.]) = 1
vertex 7: vertex_values[7] = 1.5 u([ 0.5 1. ]) = 1.5
vertex 8: vertex_values[8] = 2 u([ 1. 1.]) = 2

We can ask FEniCS to give us the mapping from vertices to degrees of
freedom for a certain function space V :

v2d = vertex_to_dof_map(V)

Now, nodal_values[v2d[i]] will give us the value of the degree of freedom
in u corresponding to vertex i (v2d[i]). In particular, nodal_values[v2d]
is an array with all the elements in the same (vertex numbered) order as
coordinates. The inverse map, from degrees of freedom number to vertex
number is given by dof_to_vertex_map(V). This means that we may call
coordinates[dof_to_vertex_map(V)] to get an array of all the coordinates
in the same order as the degrees of freedom. Note that these mappings are
only available in FEniCS for P1 elements.

For Lagrange elements of degree larger than 1, there are degrees of free-
dom (nodes) that do not correspond to vertices. For these elements, we may
get the vertex values by calling u.compute_vertex_values(mesh), and we
can get the degrees of freedom by calling u.vector().array(). To get the
coordinates associated with all degrees of freedom, we need to iterate over
the elements of the mesh and ask FEniCS to return the coordinates and dofs
associated with each cell. This information is stored in the FiniteElement
and DofMap object of a FunctionSpace. The following code illustrates how
to iterate over all elements of a mesh and print the degrees of freedom and
coordinates associated with the element.

element = V.element()
dofmap = V.dofmap()
for cell in cells(mesh):

print(element.tabulate_dof_coordinates(cell))
print(dofmap.cell_dofs(cell.index()))

Cheap vs expensive function evaluation

Given a Function object u, we can evaluate its values in various ways:

1. u(x) for an arbitrary point x
2. u.vector().array()[i] for degree of freedom number i
3. u.compute_vertex_values()[i] at vertex number i

The first method, though very flexible, is in general expensive while the
other two are very efficient (but limited to certain points).



5.2 Working with linear solvers 141

To demonstrate the use of point evaluation of Function objects, we write
out the computed u at the center point of the domain and compare it with
the exact solution:

center = (0.5, 0.5)
error = u_D(center) - u(center)
print(’Error at %s: %g’ % (center, error))

For a 2× (3×3) mesh, the output from the previous snippet becomes

Error at (0.5, 0.5): -0.0833333

The discrepancy is due to the fact that the center point is not a node in this
particular mesh, but a point in the interior of a cell, and u varies linearly over
the cell while u_D is a quadratic function. When the center point is a node,
as in a 2× (2×2) or 2× (4×4) mesh, the error is of the order 10−15.

We have seen how to extract the nodal values in a numpy array. If desired,
we can adjust the nodal values too. Say we want to normalize the solution
such that maxj |Uj |= 1. Then we must divide all Uj values by maxj |Uj |. The
following function performs the task:

def normalize_solution(u):
"""Normalize solution by dividing by max(|u|)."""
nodal_values = u.vector().array()
u_max = np.abs(nodal_values).max()
nodal_values /= u_max
u.vector()[:] = nodal_values
#u.vector().set_local(dofs) # alternative

The /= operator implies an in-place modification of the object on the left-
hand side: all elements of the array nodal_values are divided by the value
u_max. Alternatively, we could do nodal_values = nodal_values / u_max,
which implies creating a new array on the right-hand side and assigning this
array to the name nodal_values.

Be careful when manipulating degrees of freedom

A call like u.vector().array() returns a copy of the data in u.vector().
One must therefore never perform assignments like u.vector.array()[:]
= ..., but instead extract the numpy array (i.e., a copy), manipulate it,
and insert it back with u.vector()[:] = or use u.set_local(...).

All the code in this can be found in the file ft14_poisson_iterative.py
(Poission solver with use of iterative methods).
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5.3 Postprocessing computations

As the final theme in this chapter, we will look at how to postprocess computa-
tions; that is, how to compute various derived quantities from the computed
solution of a PDE. The solution u itself may be of interest for visualizing gen-
eral features of the solution, but sometimes one is interested in computing
the solution of a PDE to compute a specific quantity that derives from the
solution, such as, e.g., the flux, a point-value, or some average of the solution.

5.3.1 A variable-coefficient Poisson problem

As a test problem, we will extend the Poisson problem from Chapter 2 with
a variable coefficient κ(x,y) in the Laplace operator:

−∇· [κ(x,y)∇u(x,y)] = f(x,y) in Ω, (5.3)
u(x,y) = uD(x,y) on ∂Ω . (5.4)

Let us continue to use our favorite solution u(x,y) = 1 +x2 + 2y2 and then
prescribe κ(x,y) = x+y. It follows that uD(x,y) = 1+x2 +2y2 and f(x,y) =
−8x−10y.

We shall quickly demonstrate that this simple extension of our model
problem only requires an equally simple extension of the FEniCS program.
The following simple changes must be made to the previously shown codes:

• the solver function must take k (κ) as an argument,
• a new Expression k must be defined for the variable coefficient,
• the right-hand side f must be an Expression since it is no longer a con-

stant,
• the formula for a(u,v) in the variational problem must be updated.

We first address the modified variational problem. Multiplying the PDE by
a test function v and integrating by parts now results in∫

Ω
κ∇u ·∇vdx−

∫
∂Ω

κ
∂u

∂n
vds=

∫
Ω
fvdx.

The function spaces for u and v are the same as in the problem with κ= 1,
implying that the boundary integral vanishes since v = 0 on ∂Ω where we
have Dirichlet conditions. The variational forms a and L in the variational
problem a(u,v) = L(v) then become

a(u,v) =
∫
Ω
κ∇u ·∇vdx, L(v) =

∫
Ω
fvdx. (5.5)

We must thus replace
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a = dot(grad(u), grad(v))*dx

by

a = k*dot(grad(u), grad(v))*dx

Moreover, the definitions of k and f in the test problem read

k = Expression(’x[0] + x[1]’)
f = Expression(’-8*x[0] - 10*x[1]’)

No additional modifications are necessary. The file ft11_poisson_bcs.py
(Poisson problem, variable coefficients) is a copy of ft14_poisson_iterative.py
with the mentioned changes incorporated. Observe that κ = 1 recovers the
original problem in ft14_poisson_iterative.py.

You can execute the file and confirm that it recovers the exact solution u
at the nodes.

5.3.2 Flux computations

It is often of interest to compute the flux Q=−κ∇u. Since u=
∑N
j=1Ujφj ,

it follows that

Q=−κ
N∑
j=1

Uj∇φj .

However, the gradient of a piecewise continuous finite element scalar field
is a discontinuous vector field since the basis functions {φj} have discontin-
uous derivatives at the boundaries of the cells. For example, using Lagrange
elements of degree 1, u is linear over each cell, and the gradient becomes a
piecewise constant vector field. On the contrary, the exact gradient is con-
tinuous. For visualization and data analysis purposes, we often want the
computed gradient to be a continuous vector field. Typically, we want each
component of ∇u to be represented in the same way as u itself. To this end,
we can project the components of ∇u onto the same function space as we
used for u. This means that we solve w =∇u approximately by a finite ele-
ment method, using the same elements for the components of w as we used
for u. This process is known as projection.

Projection is a common operation in finite element analysis and FEniCS
has a function for easily performing the projection: project(expression,
W), which returns the projection of some expression into the space W.

In our case, the flux Q=−κ∇u is vector-valued and we need to pick W as
the vector-valued function space of the same degree as the space V where u
resides:

V = u.function_space()
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mesh = V.mesh()
degree = V.ufl_element().degree()
W = VectorFunctionSpace(mesh(), ’P’, degree)

grad_u = project(grad(u), W)
flux_u = project(-k*grad(u), W)

The applications of projection are many, including turning discontinuous
gradient fields into continuous ones, comparing higher- and lower-order func-
tion approximations, and transforming a higher-order finite element solution
down to a piecewise linear field, which is required by many visualization
packages.

Plotting the flux vector field is naturally as easy as plotting anything else:

plot(flux_u, title=’flux field’)

flux_x, flux_y = flux_u.split(deepcopy=True) # extract components
plot(flux_x, title=’x-component of flux (-kappa*grad(u))’)
plot(flux_y, title=’y-component of flux (-kappa*grad(u))’)

The deepcopy=True argument signifies a deep copy, which is a general term in
computer science implying that a copy of the data is returned. (The opposite,
deepcopy=False, means a shallow copy, where the returned objects are just
pointers to the original data.)

For data analysis of the nodal values of the flux field, we can grab the
underlying numpy arrays (which demands a deepcopy=True in the split of
flux):

flux_x_nodal_values = flux_x.vector().dofs()
flux_y_nodal_values = flux_y.vector().dofs()

The degrees of freedom of the flux_u vector field can also be reached by

flux_u_nodal_values = flux_u.vector().array()

However, this is a flat numpy array containing the degrees of freedom for both
the x and y components of the flux and the ordering of the components may
be mixed up by FEniCS in order to improve computational efficiency.

The function demo_test_flux in the program ft11_poisson_bcs.py
demonstrates the computations described above.

Manual projection.

Although you will always use project to project a finite element func-
tion, it can be instructive to look at how to formulate the projection
mathematically and implement its steps manually in FEniCS.

Let’s say we have an expression g= g(u) that we want to project into
some space W . The mathematical formulation of the (L2) projection
w = PW g into W is the variational problem
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Ω
wvdx=

∫
Ω
gvdx (5.6)

for all test functions v ∈W . In other words, we have a standard varia-
tional problem a(w,v) = L(v) where now

a(w,v) =
∫
Ω
wvdx, (5.7)

L(v) =
∫
Ω
gvdx. (5.8)

Note that when the functions in W are vector-valued, as is the case
when we project the gradient g(u) =∇u, we must replace the products
above by w ·v and g ·v.

The variational problem is easy to define in FEniCS.

w = TrialFunction(W)
v = TestFunction(W)

a = w*v*dx # or dot(w, v)*dx when w is vector-valued
L = g*v*dx # or dot(g, v)*dx when g is vector-valued
w = Function(W)
solve(a == L, w)

The boundary condition argument to solve is dropped since there are
no essential boundary conditions in this problem.

5.3.3 Computing functionals

After the solution u of a PDE is computed, we occasionally want to compute
functionals of u, for example,

1
2 ||∇u||

2 = 1
2

∫
Ω
∇u ·∇udx, (5.9)

which often reflects some energy quantity. Another frequently occurring func-
tional is the error

||ue−u||=
(∫

Ω
(ue−u)2 dx

)1/2
, (5.10)

where ue is the exact solution. The error is of particular interest when study-
ing convergence properties of finite element methods. Other times, we may
instead be interested in computing the flux out through a part Γ of the
boundary ∂Ω,

F =−
∫
Γ
κ∇u ·nds, (5.11)
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where n is an outward unit normal at Γ and κ is a coefficient (see the problem
in Section 5.3 for a specific example).

All these functionals are easy to compute with FEniCS, as we shall see in
the examples below.

Energy functional. The integrand of the energy functional (5.9) is de-
scribed in the UFL language in the same manner as we describe weak forms:

energy = 0.5*dot(grad(u), grad(u))*dx
E = assemble(energy)

The functional energy is evaluated by calling the assemble function that we
have previously used to assemble matrices and vectors. FEniCS will recognize
that the form has ”rank 0” (since it contains no trial and test functions) and
return the result as a scalar value.

Error functional. Computing the functional (5.10) can be done as follows:
by

error = (u_e - u)**2*dx
E = sqrt(abs(assemble(error)))

The exact solution ue is here in a Function or Expression object u_e, while
u is the finite element approximation (and thus a Function). Sometimes, for
very small error values, the result of assemble(error) can be a (very small)
negative number, so we have used abs in the expression for E above to ensure
a positive value for the sqrt function.

As will be explained and demonstrated in Section 5.3.4, the integration
of (u_e - u)**2*dx can result in too optimistic convergence rates unless
one is careful how u_e is transferred onto a mesh. The general recommen-
dation for reliable error computation is to use the errornorm function (see
help(errornorm) and Section 5.3.4 for more information):

E = errornorm(u_e, u)

Flux Functional. To compute flux integrals like F = −
∫
Γ κ∇u ·nds, we

need to define the n vector, referred to as facet normal in FEniCS. If the sur-
face domain Γ in the flux integral is the complete boundary, we can perform
the flux computation by

n = FacetNormal(mesh)
flux = -k*dot(grad(u), n)*ds
total_flux = assemble(flux)

Although grad(u) and nabla_grad(u) are interchangeable in the above ex-
pression when u is a scalar function, we have chosen to write grad(u) because
this is the right expression if we generalize the underlying equation to a vec-
tor Laplace/Poisson PDE. With nabla_grad(u) we must in that case write
dot(n, nabla_grad(u)).
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It is possible to restrict the integration to a part of the boundary by using a
mesh function to mark the relevant part, as explained in Section 4.4. Assum-
ing that the part corresponds to subdomain number i, the relevant syntax
for the variational formulation of the flux is -k*dot(grad(u), n)*ds(i).

5.3.4 Computing convergence rates

A central question for any numerical method is its convergence rate: how
fast does the error approach zero when the resolution is increased? For finite
element methods, this typically corresponds to proving, theoretically or em-
pirically, that the error e = ue−u is bounded by the mesh size h to some
power r; that is, ‖e‖ ≤ Chr for some constant C. The number r is called the
convergence rate of the method. Note that different norms, like the L2-norm
‖e‖ or H1

0 -norm ‖∇e‖ typically have different convergence rates.
To illustrate how to compute errors and convergence rates in FEniCS,

we have included the function convergence_rate in ft11_poisson_bcs.py.
This is a tool that is very handy when verifying finite element codes and will
therefore be explained in detail here.

Computing error norms. As we have already seen, the L2-norm of the
error ue−u can be implemented in FEniCS by

error = (u_e - u)**2*dx
E = sqrt(abs(assemble(error)))

As above, we have used abs in the expression for E above to ensure a positive
value for the sqrt function.

It is important to understand how FEniCS computes the error from the
above code, since we may otherwise run into subtle issues when using the
value for computing convergence rates. The first subtle issue is that if u_e is
not already a finite element function (an object created using Function(V)),
which is the case if u_e is defined as an Expression, FEniCS must interpolate
u_e into some local finite element space on each element of the mesh. The
degree used for the interpolation is determined by the mandatory keyword
argument to the Expression class, for example:

u_e = Expression(’sin(x[0])’, degree=1)

This means that the error computed will not be equal to the actual error
‖ue−u‖ but rather the difference between the finite element solution u and
the piecewise linear interpolant of ue. This may yield a too optimistic (too
small) value for the error. A better value may be achieved by interpolating
the exact solution into a higher-order function space, which can be done by
simply increasing the degree:

u_e = Expression(’sin(x[0])’, degree=3)
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The second subtle issue is that when FEniCS evaluates the expression
(u_e - u)**2, this will be expanded into u_e**2 + u**2 - 2*u_e*u. If the
error is small (and the solution itself is of moderate size), this calculation
will correspond to the subtraction of two positive numbers (u_e**2 + u**2
∼ 1 and 2*u_e*u ∼ 1) yielding a small number. Such a computation is very
prone to round-off errors, which may again lead to an unreliable value for the
error. To make this situation worse, FEniCS may expand this computation
into a large number of terms, in particular for higher order elements, making
the computation very unstable.

To help with these issues, FEniCS provides the built-in function errornorm
which computes the error norm in a more intelligent way. First, both u_e and
u are interpolated into a higher-order function space. Then, the degrees of
freedom of u_e and u are subtracted to produce a new function in the higher-
order function space. Finally, FEniCS integrates the square of the difference
function to get the value of the error norm. Using the errornorm function is
simple:

E = errornorm(u_e, u, normtype=’L2’)

It is illustrative to look at a short implementation of errornorm:

def errornorm(u_e, u):
V = u.function_space()
mesh = V.mesh()
degree = V.ufl_element().degree()
W = FunctionSpace(mesh, ’P’, degree + 3)
u_e_W = interpolate(u_e, W)
u_W = interpolate(u, W)
e_W = Function(W)
e_W.vector()[:] = u_e_W.vector().array() - u_W.vector().array()
error = e_W**2*dx
return sqrt(abs(assemble(error)))

Sometimes it is of interest to compute the error of the gradient field:
||∇(ue − u)||, often referred to as the H1

0 or H1 seminorm of the error.
This can either be expressed as above, replacing the expression for error
by error = dot(grad(e_W), grad(e_W))*dx, or by calling errornorm in
FEniCS:

E = errornorm(u_e, u, norm_type=’H10’)

Type help(errornorm) in Python for more information about available norm
types.

The function compute_errors in ft11_poisson_bcs.py illustrates the
computation of various error norms in FEniCS.

Computing convergence rates. Let’s examine how to compute conver-
gence rates in FEniCS. The solver function in ft11_poisson_bcs.py allows
us to easily compute solutions for finer and finer meshes and enables us to
study the convergence rate. Define the element size h = 1/n, where n is the
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number of cell divisions in the x and y directions (n=Nx=Ny in the code). We
perform experiments with h0 >h1 >h2 > · · · and compute the corresponding
errors E0,E1,E2 and so forth. Assuming Ei = Chri for unknown constants
C and r, we can compare two consecutive experiments, Ei−1 = Chri−1 and
Ei = Chri , and solve for r:

r = ln(Ei/Ei−1)
ln(hi/hi−1) .

The r values should approach the expected convergence rate (typically the
polynomial degree + 1 for the L2-error) as i increases.

The procedure above can easily be turned into Python code. Here we run
through a list of element degrees (P1, P2, P3, and P4), perform experiments
over a series of refined meshes, and for each experiment report the six error
types as returned by compute_errors:

def convergence_rate(u_exact, f, u_D, kappa):
"""
Compute convergence rates for various error norms for a
sequence of meshes and elements.
"""

h = {} # discretization parameter: h[degree][level]
E = {} # error measure(s): E[degree][level][error_type]
degrees = 1, 2, 3, 4
num_levels = 5

# Iterate over degrees and mesh refinement levels
for degree in degrees:

n = 4 # coarsest mesh division
h[degree] = []
E[degree] = []
for i in range(num_levels):

n *= 2
h[degree].append(1.0 / n)
u = solver(kappa, f, u_D, n, n, degree,

linear_solver=’direct’)
errors = compute_errors(u_exact, u)
E[degree].append(errors)
print(’2 x (%d x %d) P%d mesh, %d unknowns, E1=%g’ %

(n, n, degree, u.function_space().dim(),
errors[’u - u_exact’]))

# Compute convergence rates
from math import log as ln # log is a fenics name too
error_types = list(E[1][0].keys())
rates = {}
for degree in degrees:

rates[degree] = {}
for error_type in sorted(error_types):

rates[degree][error_type] = []
for i in range(num_meshes):
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Ei = E[degree][i][error_type]
Eim1 = E[degree][i-1][error_type]
r = ln(Ei/Eim1)/ln(h[degree][i]/h[degree][i-1])
rates[degree][error_type].append(round(r,2))

return rates

Test problem. To demonstrate the computation of convergence rates, we
will pick an exact solution ue given by

ue(x,y) = sin(ωπx)sin(ωπy)

on the unit square. This choice implies f(x,y) = 2ω2π2u(x,y). With ω re-
stricted to an integer, it follows that the boundary value is given by uD = 0.

We need to define the appropriate boundary conditions, the exact solution,
and the f function in the code:

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0), boundary)

omega = 1.0
u_e = Expression(’sin(omega*pi*x[0])*sin(omega*pi*x[1])’, omega=omega)

f = 2*pi**2*omega**2*u_e

Experiments. An implementation of the computation of the convergence
rate can be found in the function convergence_rate_sin() in the demo
program ft11_poisson_bcs.py. We achieve some interesting results. Using
the error measure E5 based on the infinity norm of the difference of the
degrees of freedom, we obtain the following table.

element n = 8 n = 16 n = 32 n = 64 n = 128

P1 1.99 1.97 1.99 2.00 2.00
P2 3.99 3.96 3.99 4.00 3.99
P3 3.96 3.89 3.96 3.99 4.00
P4 3.75 4.99 5.00 5.00

An entry like 3.96 for n= 32 and P3 means that we estimate the rate 3.96 by
comparing two meshes, with resolutions n= 32 and n= 16, using P3 elements.
The coarsest mesh has n = 4. The best estimates of the rates appear in the
right-most column, since these rates are based on the finest resolutions and
are hence deepest into the asymptotic regime.

The computations with P4 elements on a 2×(128×128) mesh with a direct
solver (UMFPACK) on a small laptop broke down so these results have been
left out of the table. Otherwise, we achieve expected results: the error goes
like hd+1 for elements of degree d. Also the L2-norm errors computed using
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the FEniCS errornorm function show the expected hd+1 rate for u and hd
for ∇u.

However, using (u_e - u)**2 for the error computation, with the same
degree for the interpolation of u_e as for u, gives strange results:

element n = 8 n = 16 n = 32 n = 64 n = 128

P1 1.98 1.94 1.98 2.0 2.0
P2 3.98 3.95 3.99 3.99 3.99
P3 3.69 4.03 4.01 3.95 2.77

This is an example where it is important to interpolate u_e to a higher-order
space (polynomials of degree 3 are sufficient here) to avoid computing a too
optimistic convergence rate.

Checking convergence rates is the next best method for verifying PDE
codes (the best being a numerical solution without approximation errors as
in Section 5.2.6 and many other places in this tutorial).

5.3.5 Taking advantage of structured mesh data

Many readers have extensive experience with visualization and data analysis
of 1D, 2D, and 3D scalar and vector fields on uniform, structured meshes,
while FEniCS solvers exclusively work with unstructured meshes. Since it
can many times be practical to work with structured data, we discuss in this
section how to extract structured data for finite element solutions computed
with FEniCS.

A necessary first step is to transform our Mesh object to an object repre-
senting a rectangle with equally-shaped rectangular cells. The second step is
to transform the one-dimensional array of nodal values to a two-dimensional
array holding the values at the corners of the cells in the structured mesh.
We want to access a value by its i and j indices, i counting cells in the x
direction, and j counting cells in the y direction. This transformation is in
principle straightforward, yet it frequently leads to obscure indexing errors,
so using software tools to ease the work is advantageous.

In the directory src/modules, associated with this book, we have included
the Python module BoxField that provides utilities for working with struc-
tured mesh data in FEniCS. Given a finite element function u, the following
function returns a BoxField object that represents u on a structured mesh:

def structured_mesh(u, divisions):
"""Represent u on a structured mesh."""
# u must have P1 elements, otherwise interpolate to P1 elements
u2 = u if u.ufl_element().degree() == 1 else \

interpolate(u, FunctionSpace(mesh, ’P’, 1))
mesh = u.function_space().mesh()
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from BoxField import fenics_function2BoxField
u_box = fenics_function2BoxField(

u2, mesh, divisions, uniform_mesh=True)
return u_box

AL 1: Comment below needs to be modified if interpolation to P1 is
included in BoxField.

Note that we can only turn functions on meshes with P1 elements into
BoxField objects, so if u is based on another element type, we first inter-
polate the scalar field onto a mesh with P1 elements. Also note that to use
the function, we need to know the divisions into cells in the various spatial
directions (divisions).

The u_box object contains several useful data structures:

• u_box.grid: object for the structured mesh
• u_box.grid.coor[X]: grid coordinates in X=0 direction
• u_box.grid.coor[Y]: grid coordinates in Y=1 direction
• u_box.grid.coor[Z]: grid coordinates in Z=2 direction
• u_box.grid.coorv[X]: vectorized version of u_box.grid.coor[X] (for

vectorized computations or surface plotting)
• u_box.grid.coorv[Y]: vectorized version of u_box.grid.coor[Y]
• u_box.grid.coorv[Z]: vectorized version of u_box.grid.coor[Z]
• u_box.values: numpy array holding the u values; u_box.values[i,j]

holds u at the mesh point with coordinates
(u_box.grid.coor[X], u_box.grid.coor[Y])

AL 2: Is something missing in the last line above? The i and j indices?

Iterating over points and values. Let us go back to the solver function
in the ft11_poisson_bcs.py code from Section 5.3, compute u, map it onto
a BoxField object for a structured mesh representation, and write out the
coordinates and function values at all mesh points:

u = solver(p, f, u_b, nx, ny, 1, linear_solver=’direct’)
u_box = structured_mesh(u, (nx, ny))
u_ = u_box.values # numpy array

print(’u_ is defined on a structured mesh with %s points’ %
str(u_.shape))

# Iterate over 2D mesh points (i,j)
for j in range(u_.shape[1]):

for i in range(u_.shape[0]):
print(’u[%d, %d] = u(%g, %g) = %g’ %

(i, j,
u_box.grid.coor[X][i], u_box.grid.coor[X][j],
u_[i,j]))
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Computing finite difference approximations. Using the multidimen-
sional array u_ = u_box.values, we can easily express finite difference ap-
proximations of derivatives:

x = u_box.grid.coor[X]
dx = x[1] - x[0]
u_xx = (u_[i - 1, j] - 2*u_[i, j] + u_[i + 1, j]) / dx**2

Making surface plots. The ability to access a finite element field as struc-
tured data is handy in many occasions, e.g., for visualization and data anal-
ysis. Using Matplotlib, we can create a surface plot, as shown in Figure 5.1
(upper left):

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection=’3d’)
cv = u_box.grid.coorv # vectorized mesh coordinates
ax.plot_surface(cv[X], cv[Y], u_, cmap=cm.coolwarm,

rstride=1, cstride=1)
plt.title(’Surface plot of solution’)

The key issue is to know that the coordinates needed for the surface plot is
in u_box.grid.coorv and that the values are in u_.

Making contour plots. A contour plot can also be made by Matplotlib:

fig = plt.figure()
ax = fig.gca()
levels = [1.5, 2.0, 2.5, 3.5]
cs = ax.contour(cv[X], cv[Y], u_, levels=levels)
plt.clabel(cs) # add labels to contour lines
plt.axis(’equal’)
plt.title(’Contour plot of solution’)

The result appears in Figure 5.1 (upper right).

Making curve plots through the domain. A handy feature of BoxField
objects is the ability to give a starting point in the domain and a direction,
and then extract the field and corresponding coordinates along the nearest
line ofmesh points. We have already seen how to interpolate the solution along
a line in the mesh, but with BoxField you can pick out the computational
points (vertices) for examination of these points. Numerical methods often
show improved behavior at such points so this is of interest. For 3D fields one
can also extract data in a plane.

Say we want to plot u along the line y = 0.4. The mesh points, x, and the
u values along this line, u_val, can be extracted by

start = (0, 0.4)
x, u_val, y_fixed, snapped = u_box.gridline(start, direction=X)
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Fig. 5.1 Various plots of the solution on a structured mesh.

The variable snapped is true if the line is snapped onto to nearst gridline
and in that case y_fixed holds the snapped (altered) y value. (A keyword
argument snap is by default True to avoid interpolation and force snapping.)

A comparison of the numerical and exact solution along the line y ≈ 0.41
(snapped from y = 0.4) is made by the following code:

start = (0, 0.4)
x, u_val, y_fixed, snapped = u_box.gridline(start, direction=X)
u_e_val = [u_b((x_, y_fixed)) for x_ in x]

plt.figure()
plt.plot(x, u_val, ’r-’)
plt.plot(x, u_e_val, ’bo’)
plt.legend([’P1 elements’, ’exact’], loc=’upper left’)
plt.title(’Solution along line y=%g’ % y_fixed)
plt.xlabel(’x’); plt.ylabel(’u’)

See Figure 5.1 (lower left) for the resulting curve plot.

Making curve plots of the flux. Let us also compare the numerical and
exact flux −κ∂u/∂x along the same line as above:

flux_u = flux(u, p)
flux_u_x, flux_u_y = flux_u.split(deepcopy=True)
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# Plot the numerical and exact flux along the same line
if flux_u_x.ufl_element().degree() == 1:

flux2_x = flux_u_x
else:

V1 = FunctionSpace(u.function_space().mesh(), ’P’, 1)
flux2_x = interpolate(flux_x, V)

flux_u_x_box = structured_mesh(flux_u_x, (nx, ny))
x, flux_u_val, y_fixed, snapped = \

flux_u_x_box.gridline(start, direction=X)
y = y_fixed

plt.figure()
plt.plot(x, flux_u_val, ’r-’)
plt.plot(x, flux_u_x_exact(x, y_fixed), ’bo’)
plt.legend([’P1 elements’, ’exact’], loc=’upper right’)
plt.title(’Flux along line y=%g’ % y_fixed)
plt.xlabel(’x’)
plt.ylabel(’u’)

The second plt.plot command requires a function flux_u_x_exact(x,y)
to be available for the exact flux expression.

Note that Matplotlib is one choice of plotting package. With the unified
interface in the SciTools package one can access Matplotlib, Gnuplot, MAT-
LAB, OpenDX, VisIt, and other plotting engines through the same API.
Test problem. The graphics referred to in Figure 5.1 correspond to a test
problem with prescribed solution ue =H(x)H(y), where

H(x) = e−16(x− 1
2 )2

sin(3πx) .

The corresponding right-hand side f is obtained by inserting the exact solu-
tion into the PDE and differentiating as before. Although it is easy to carry
out the differentiation of f by hand and hardcode the resulting expressions
in an Expression object, a more reliable habit is to use Python’s symbolic
computing engine, SymPy, to perform mathematics and automatically turn
formulas into C++ syntax for Expression objects. A short introduction was
given in Section 3.2.3.

We start out with defining the exact solution in sympy:

from sympy import exp, sin, pi # for use in math formulas
import sympy as sym

H = lambda x: exp(-16*(x-0.5)**2)*sin(3*pi*x)
x, y = sym.symbols(’x[0], x[1]’)
u = H(x)*H(y)

Turning the expression for u into C or C++ syntax for Expression objects
needs two steps. First we ask for the C code of the expression,

u_c = sym.printing.ccode(u)

Printing out u_c gives (the output is here manually broken into two lines):

https://github.com/hplgit/scitools
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-exp(-16*pow(x[0] - 0.5, 2) - 16*pow(x[1] - 0.5, 2))*
sin(3*M_PI*x[0])*sin(3*M_PI*x[1])

The necessary syntax adjustment is replacing the symbol M_PI for π in
C/C++ by pi (or DOLFIN_PI):

u_c = u_c.replace(’M_PI’, ’pi’)
u_b = Expression(u_c)

Thereafter, we can progress with the computation of f =−∇· (κ∇u):

kappa = 1
f = sym.diff(-kappa*sym.diff(u, x), x) + \

sym.diff(-kappa*sym.diff(u, y), y)
f = sym.simplify(f)
f_c = sym.printing.ccode(f)
f_c = f_c.replace(’M_PI’, ’pi’)
f = Expression(f_c)

We also need a Python function for the exact flux −κ∂u/∂x:

flux_u_x_exact = sym.lambdify([x, y], -kappa*sym.diff(u, x),
modules=’numpy’)

It remains to define kappa = Constant(1) and set nx and ny before calling
solver to compute the finite element solution of this problem.
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