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MULTISCALE MODELING OF THE

ACOUSTIC PROPERTIES OF LUNG PARENCHYMA ∗

Malin Siklosi1, Oliver E. Jensen2, Richard H. Tew2 and Anders Logg3

Abstract. Lung parenchyma is a foam-like material consisting of millions of alveoli. Sound transmis-
sion through parenchyma plays an important role in the non-invasive diagnosis of many lung diseases.
We model the parenchyma as a porous solid with air filled pores and consider the Biot equations as
a model for its acoustic properties. The Biot equations govern small-amplitude wave propagation in
fluid-saturated porous solids, and include the effects of relative motion between the fluid and the solid
frame. The Biot equations can be derived from a micro-structure model of the porous material, and
the material parameters in the equations can be obtained from the solution of two independent micro-
structure problems, a fluid-cell problem (governed by the unsteady Stokes equations) and a solid-cell
problem. We review the homogenization approach for media with periodic micro-structure, and solve a
fluid-cell problem numerically for an idealized two-dimensional micro-scale geometry for a wide range
of frequencies. We also discuss sound speeds in lung tissue.

Résumé. ...

1. Introduction

Lung sounds provide an invaluable non-invasive technique for the assessment and diagnosis of a wide range of
pulmonary pathologies [33]. In addition to the traditional use of a stethoscope in the doctor’s surgery, acoustic
devices can be used to measure lung properties (such as volume) or to monitor a patient’s respiratory condition.
While clinicians may have a good empirical understanding of the relationship between the character of a lung
sound and the underlying pathology, less is known about the detailed physical mechanisms of sound generation
and transmission in lung tissue, and the relationship between sounds and any underlying lung diseases.

The lung is a complex organ. The airways of the lung form a bifurcating network of tubes that is embedded in
parenchyma, a foam-like material consisting of around 300 million alveoli. Diseases such as asthma, emphysema,
and COPD (chronic obstructive pulmonary disease) are associated with changes in the detailed structure of the
lung at the alveolar level. Many experimental studies have been performed on healthy and diseased lungs in
order to investigate the acoustic properties of the parenchyma and to assess to what extent it is possible to
obtain information on tissue properties from acoustic measurements. However, current theoretical models of
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the acoustic properties of parenchyma are relatively simple and are based on the work by Rice [36], where the
parenchyma is modelled as a homogeneous mixture of a gas phase and a tissue phase. Further development of
theoretical models which are based on more detailed tissue mechanics therefore has the potential to contribute
to increased understanding of experimental findings, and is the purpose of this paper. For an overview of
experimental and theoretical studies, we refer to [33]. Also, for recent developments of homogeneous mixture
models, see [28–30].

In [36], Rice suggested a model for the speed of sound in lung parenchyma which is based on the fact that
a two-phase porous medium may be considered to be an elastic continuum if the sound wavelength greatly
exceeds the pore size and if the cells do not communicate [40]. Under these assumptions the speed of sound in
the medium is independent of frequency and is given by the expression

VWood =
√

Kave/ρave, (1)

where Kave is the average bulk modulus and ρave is the average density of the mixture. Expression (1) is often
called Wood’s formula. In [36] it is assumed that the communication between alveoli is negligible. The alveolar
diameter is about 10−4 m and the speed of sound in parenchyma is of the order 30 m/s. Hence, Rice modeled
the parenchyma as a homogeneous mixture of non-communicating air bubbles, modeling the alveoli, and water,
modeling the lung tissue. For this model the speed of sound is given by equation (1) and

Kave =

(

φ

κ
+

(1 − φ)

Ks

)

−1

, ρave = φρf + (1 − φ)ρs,

where κ and ρf are the bulk modulus and density of air respectively, and Ks and ρs are the bulk modulus and
density of the tissue. Ks and ρs are approximated by the corresponding values for water. Also, φ denotes the
porosity, that is, the volume fraction of air.

Measurements of the speed of sound presented in [36] show good agreement with the sound speed predicted by
Wood’s formula for most lung volumes. However, for highly inflated lungs the measured speed of sound is higher
than predicted by Woods’ formula. Rice suggests that this can be due to the breakdown of the assumption
of non-communication at high lung volume. A number of studies [22, 24, 27, 32] on healthy lungs inflated in
the range from residual volume to total lung capacity confirm that Woods’ formula gives a good prediction of
the speed of sound. In [22, 27, 32] human lungs are studied and in [24] pig lungs are studied. However, in [5]
Berger et al. study the speed of sound in lungs from fetal sheep. In this study the speed of sound is found to be
considerably higher than estimated by Woods’ formula and strongly frequency-dependent. It is suggested that
the high speed of sound is due to greater communication between the alveoli in the fetal sheep lung than in the
lungs used in the other studies.

The experimental deviations from Woods’ formula in [36] and [5], and the need to interpret measurements on
lung tissue with diseases such as asthma, emphysema and COPD that are associated with changes in the detailed
structure of the lung at the alveolar level, motivate the development of models which include more detailed
tissue mechanics. In the current work we consider the Biot equations [6,7] as a model for the acoustic properties
of lung parenchyma. The Biot equations govern small-amplitude wave propagation in a fluid-saturated porous
elastic solid. The dynamic behavior of the porous material is described in terms of macroscopic, space-averaged
quantities, such as acoustic pressure, elastic stress, solid and fluid displacements. The Biot model yields a
frequency-dependent speed of sound.

In the Biot model, the porous material can be characterized by a number of bulk material parameters.
Accurate estimation of the material parameters from measurements is difficult and in some situations (such
as for biological tissues) direct measurements may be impossible. Also, some of the bulk material parameters
are frequency-dependent. For the frequency-dependent parameters, only high- and low-frequency values can be
obtained in measurements, and the values for intermediate frequencies are modeled, see Johnson et al. [18].

However, using mathematical homogenization, see e.g. Burridge and Keller [13] or Pride et al. [35], the Biot
equations can be derived from a model of the micro-structure of the porous material. In the micro-structure
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model the motion of the air is governed by the linearized Navier–Stokes equations and the solid frame material
is governed by linear elasticity. In [13], Burridge and Keller derived two independent micro-structure problems,
one so-called fluid-cell problem (a frequency-dependent flow problem governed by the unsteady Stokes equations)
and one so-called solid-cell problem. The solutions of these two problems yield the bulk material parameters in
the Biot equations.

Only a few papers have addressed solving fluid- and solid-cell problems for obtaining bulk material parameters.
Zhou and Sheng [39] solved fluid- and solid-cell problems using a finite element method for idealized micro-
structural geometries. Chapman and Higdon [14, 15] solved fluid- and solid-cell problems using a harmonic
expansion technique for idealized micro-structural geometry consisting of periodic lattices of spheres in three
dimensions. Terada et al. [38] solved fluid- and solid-cell problems in the quasi-static case using a finite element
method; in [38] three-dimensional micro-scale geometries were used, involving lattices of spheres or octahedra.
Burridge and Keller’s approach [13] has been applied to lung parenchyma only once previously, by Owen and
Lewis [31], who treated incompressible flow and considered a spatially one-dimensional unit cell.

In this paper we first introduce the Biot equations (Section 2). In Section 3, we review how homogenization
can be used to derive the Biot equations following [13], and in Section 4 we demonstrate how a micro-scale
simulation can be used to obtain macro-scale properties by solving a frequency-dependent fluid-cell problem
numerically for an idealized two-dimensional micro-scale geometry. The main purpose of this very idealized
example is to make the relation between micro-scale properties and macro-scale properties clear. In order
be able to simulate macro-scale properties for parenchyma, a realistic micro-scale model should be used which
takes into account the complicated micro-structure of parenchyma. In reality the parenchyma is anisotropic and
inhomogeneous, but for simplicity we here consider the Biot equations for isotropic and homogeneous materials.
In anisotropic, inhomogeneous cases we expect the parameters in the Biot equations to depend on direction and
vary in space, respectively. In Section 5, we discuss the speed of sound for Biot materials and compare it with
measured values for lung parenchyma. Finally, in Section 6 we summarize our conclusions.

2. The Biot equations

In [6, 7], Biot proposed a theory for the propagation of small-amplitude waves in a porous elastic solid
saturated by a compressible viscous fluid. In [8, 9] the theory was extended and generalized. The book by
Allard [1] and the paper [17] by Johnson give excellent presentations of the theory for sound propagation in
porous materials including the Biot equations. In this section we give a short review of relevant parts of the
Biot theory. We concentrate especially on linking the different formulations of the Biot equations that appear
in the literature. First, in Section 2.1, we consider the Biot equations in the time-domain formulation, as this
formulation is the easiest to physically understand, and then, in Section 2.2, we consider the Biot equations
in the frequency-domain. The formulation of the Biot equations using the so-called viscodynamic operator is
introduced in Section 2.3, as this formulation is the most convenient to use when discussing homogenization,
as is done in Sections 3 and 4. We also, in Section 2.4, formulate the Biot equations using complex density
coefficients. This formulation is used in engineering applications where parameterized approximate models have
been developed for the frequency-dependent coefficients in the Biot equations. We use this in Section 5 for
studying the speed of sound in Biot materials.

2.1. The Biot equations in the time-domain

Consider a system composed of a porous elastic solid frame saturated by a viscous fluid. It is assumed that
the fluid is compressible and can move relative to the solid frame. It is further assumed that the pore size
distribution is concentrated around its average value and that the porous material is statistically isotropic.
Consider a volume of the solid-fluid system represented by a cube of unit size. Let φ denote the porosity, that
is the volume fraction of fluid. The size of the unit element is assumed to be small compared to the wavelength
of elastic waves, and the size of the unit element is assumed to be large compared to the pore size. This will
give limitations for the frequencies for which the theory is valid. The relation between the alveolar size and the
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sound wavelength considered below satisfies the assumptions for the relevant frequencies. Let the vector Ûs

denote the average solid displacement and let Ûf denote the average fluid displacement. Based on the above
assumptions, the Biot equations are formulated as

ρ11

∂2Ûs

∂t2
+ ρ12

∂2Ûf

∂t2
+ bF

(

∂Ûs

∂t
−

∂Ûf

∂t

)

= N∇2Ûs + (A + N)∇(∇ · Ûs) + Q∇(∇ · Ûf ), (2a)

ρ12

∂2Ûs

∂t2
+ ρ22

∂2Ûf

∂t2
− bF

(

∂Ûs

∂t
−

∂Ûf

∂t

)

= Q∇(∇ · Ûs) + R∇(∇ · Ûf ), (2b)

compare [6, section 6] and [7, section 4]. Here, A, N , Q and R are elastic coefficients, see [6, section 2]. Their
values depend on the micro-structure geometry of the porous solid, the elastic properties of the solid frame
material, and the compressibility of the fluid. Also,

ρ11 = (1 − φ)ρs + ρa, (3a)

ρ12 = −ρa, (3b)

ρ22 = φρf + ρa, (3c)

where ρs is the density of the solid frame material, ρf is the density of the fluid, and ρa is a mass coupling
parameter, the so-called added mass, see [6, section 3]. Further, bF (ω) is the frequency-dependent viscous drag
coefficient, where b is related to Darcy’s coefficient of permeability, k, by

b = µφ2/k,

and µ is the fluid viscosity. F (ω) is a correction factor which is introduced to correct for the frequency dependence
of the viscous forces. It is normalized such that F (0) = 1, and we have

F (ω) ∼ ω1/2 as ω → ∞,

see [7, section 4] and [17, p 262–265].
In engineering applications, estimates of the material parameters A, N , Q, R, ρa, and b are typically obtained

by measurements, and the correction factor F (ω) is modeled [18]. However, mathematical homogenization
theory gives the tools to obtain material parameters from micro-structure simulations. In the next section, we
will give a brief review of how the work by Burridge and Keller [13] can be used to obtain ρa, b and F (ω)
by solving a fluid-cell problem, and in Section 4 we will present a numerical example for a specific idealized
micro-structure geometry. The parameters A, N , Q, and R, can be obtained by solving a solid-cell problem,
but we will not further consider the solid-cell problem in this paper.

Several different formulations of the Biot equations occur in the literature, and the relation between the
different notations can be quite confusing. Hence, before proceeding to discussing homogenization and micro-
structure simulation, we will briefly discuss some different formulations of the Biot equations, and how these
formulations are related.

2.2. The Biot equations in the frequency-domain

Due to the frequency-dependent parameters in the equations, it is most convenient and common to work
with the Biot equations in the frequency-domain. Assuming that all motions are time-harmonic with time
dependence eiωt, that is, Ûs = Useiωt and Ûf = Ufeiωt, we obtain the frequency-domain formulation of (2),

−ω2ρ11U
s − ω2ρ12U

f + iωbF (ω)
(

Us − Uf
)

= N∇2Us + (A + N)∇(∇ · Us) + Q∇(∇ · Uf ), (4a)

−ω2ρ12U
s − ω2ρ22U

f − iωbF (ω)
(

Us − Uf
)

= Q∇(∇ · Us) + R∇(∇ · Uf ), (4b)
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compare [6, section 6] and [7, section 4].

2.3. The Biot equations formulated using the viscodynamic operator

The Biot theory was introduced in [6–9]. Papers [6, 7] used the notation presented above, and this type of
formulation of the Biot equations is most common in the literature today. However, in [8,9], a different notation
was used. The homogenization results in [13] are related to the Biot equations using the formulation in [8, 9],
and therefore we briefly discuss how the two different formulations are related.

The Biot equations formulated using the so called viscodynamic operator is stated in [8, eq. (2.6)]. As we
will only consider the fluid-cell problem, we just need to consider the equation corresponding to (4b), which
in [8, eq. (2.6)] is formulated as

−ω2ρfU
s + iωY (ω)w = αM∇(∇ · Us) + M∇(∇ · w). (5)

The relation between the two formulations is explained in [9]. In (5), ω, ρf and Us are defined as above, and
α, M and w are related to Q, R, φ, Uf and Us by

w = φ(Uf − Us), (6a)

Q = φ(α − φ)M, (6b)

R = φ2M, (6c)

see [9, equation (2.8) and (3.31)]. By substituting (3) and (6) in (5) and comparing with (4b), we can make the
identification

Y (ω) =
1

φ2
(iω(φρf + ρa) + bF (ω)) . (7)

2.4. The Biot equations formulated using complex density coefficients

Often (4) is formulated as

−ω2ρ̃11U
s − ω2ρ̃12U

f = N∇2Us + (A + N)∇(∇ ·Us) + Q∇(∇ ·Uf ), (8a)

−ω2ρ̃12U
s − ω2ρ̃22U

f = Q∇(∇ ·Us) + R∇(∇ ·Uf ), (8b)

where the complex density coefficients are defined by

ρ̃11 ≡ ρ11 −
ibF (ω)

ω
, (9a)

ρ̃12 ≡ ρ12 +
ibF (ω)

ω
, (9b)

ρ̃22 ≡ ρ22 −
ibF (ω)

ω
. (9c)

From (7) we find

ρ̃12 = φρf + iφ2
Y (ω)

ω
and one can then use the relations ρ̃11 + ρ̃12 = (1 − φ)ρs and ρ̃12 + ρ̃22 = φρf to obtain ρ̃11 and ρ̃22.

In engineering applications usually the quantities static flow resistivity, σstatic, and tortuosity, α∞, are used
rather than b and ρa. These quantities are related by

b = σstaticφ2, (10a)

ρa = ρfφ(α∞ − 1). (10b)
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In [1, p. 23-24, 71-73, 127-129] the concept of static flow resistivity and tortuosity are further described and
methods for measuring these quantities are discussed. Sometimes also a complex-valued so-called dynamic
tortuosity α̃∞(ω) is used, defined by

α̃∞(ω) ≡ α∞ −
ibF (ω)

ωφρf
, (11)

hence

ρ̃12 = − (α̃∞(ω) − 1) ρfφ.

3. Relating the micro-scale model to the Biot parameters

Mathematical homogenization can be used to derive the Biot equations from a model of the micro-structure
of the porous material, see e.g. Burridge and Keller [13] or Pride et al. [35]. In [13], two independent micro-
structure problems are derived, one so-called fluid-cell problem and one so-called solid-cell problem, whose
solutions yield the bulk material parameters in the Biot equations. The elastic parameters A, N , Q and R are
obtained by solving the solid-cell problem, and ρa, b and F (ω) are obtained by solving the fluid-cell problem.
Below, we will briefly review the homogenization approach used in [13]. In the next section we will present a
numerical solution of a fluid-cell problem for a specific micro-structure geometry.

3.1. The micro-scale model

Consider again the system composed of a porous elastic solid frame saturated by a viscous fluid. Denote
the solid region Ds and the fluid region Df . Assume that h denotes a length which is characteristic for the
pore size, and that H denotes a typical macroscopic length for the problem. We assume that the material is
fine-grained, that is, the ratio h/H is small. We will denote this ratio by ε,

ε = h/H, ε ≪ 1.

We will consider motions of the fluid and solid which are small enough to be governed by the linearized
Navier–Stokes equations for compressible fluids and the equations of linear elasticity respectively. The Navier–
Stokes equations linearized around a background state of constant pressure and density and zero velocity are

∂p̃

∂t
= −κ∇ · ṽ, (12a)

ρf
∂ṽ

∂t
= ∇ · σ̃, (12b)

σ̃ = −p̃I + µD∇ṽ, (12c)

see e.g. Pierce [34, section 1.5 and 10.1–2; note the use of eq. (1-5.3c)]. Here, p̃ denotes the pressure perturbation
relative to the constant background state, ṽ denotes the velocity, ρf denotes the constant background fluid
density, µ denotes the fluid viscosity, and κ denotes the bulk modulus of the fluid. The linear operator D is
defined such that

∇ · D∇ṽ ≡ ∇2ṽ +
1

3
∇(∇ · ṽ).

The equation of motion for the solid is

ρs
∂2ũ

∂t2
= ∇ · τ̃ , (13)

where ũ denotes the displacement of the solid, ρs denotes the solid density and τ̃ is the solid stress tensor. We
introduce a linear operator C that relates τ̃ to ∇ũ defined such that

τ̃ = EC∇ũ. (14)
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Hence C is defined by

C∇ũ ≡
ν(∇ · ũ)

(1 + ν)(1 − 2ν)
I +

∇ũ + (∇ũ)T

2(1 + ν)
,

see e.g. [3, pp. 12–20]. Above, E and ν denote the Young’s modulus and Poisson ratio of the solid, respectively.
At the boundary ∂Ds = ∂Df , we have continuity and force balance, that is,

ṽ =
∂ũ

∂t
and n · σ̃ = n · τ̃ on ∂Df = ∂Ds, (15)

where n is the unit normal to ∂Df = ∂Ds pointing into the solid.
We now collect the equations for the fluid, (12), the equations for the solid, (13), (14), and the boundary

conditions, (15). We assume that all motions are time-harmonic with time dependence eiωt, that is, p̃ = peiωt,
ṽ = veiωt, σ̃ = σeiωt, ũ = ueiωt, and τ̃ = τ eiωt, and arrive at the micro-scale model

iωρfv = ∇ · σ, in Df , (16a)

σ = −pI + µD∇v, in Df , (16b)

iωp = −κ∇ · v, in Df , (16c)

v = iωu, on ∂Df = ∂Ds, (16d)

n · σ = n · τ , on ∂Df = ∂Ds, (16e)

−ω2ρsu = ∇ · τ , in Ds, (16f)

τ = C∇u, in Ds. (16g)

3.2. The homogenization method

In [13], the two-scale method of homogenization, [4,19,37], is used to derive equations governing the gradual
variation of space-averaged quantities such as acoustic pressure, elastic stress, solid and fluid displacements from
the micro-scale model (16). The average is taken over the micro-scale variations. In the method, it is assumed
that for all properties of the porous system, that is, v, σ, p, u, and τ , the variations at the micro-scale and
macro-scale can be separated. This is done by expressing the space dependence of the solid displacement in the
form

u = u(x,y)

and similarly for the other variables. Here x is the ordinary position vector, and y is the position vector in a
stretched coordinate system

y = ε−1x.

Hence, the first argument in u(x,y) accounts for the slow macro-scale variations, and the second argument
accounts for the rapid micro-scale variations. Here we assume that the micro-scale variations are periodic
functions of y, that is, the macro-structure is obtained by repeating a specific block of micro-structure. In
tissue, there are random variations in the micro-structure. The same homogenization method can be used
when there are random variations in the micro-structure, see [13], but the evaluation of the fluid- and solid-cell
problems will be more complicated. However, the most important concepts are captured without considering
random variations at the micro-scale.

It is further assumed that the two sets of variables x and y are independent, and that derivatives can be
separated into one macro-scale component and one micro-scale component,

∇u = ∇xu + ε−1∇yu.

It is also assumed that each property of the porous material can be expanded in an asymptotic power series in
ε, that is,

u(x,y, ε) = u0(x,y) + εu1(x,y) + ε2u2(x,y) + O(ε3). (17)
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The Biot equations were formulated in [6, 7] to capture the large scale behavior for frequencies ranging from
low frequencies, where the character of the micro-scale flow is dominated by viscous effects (Poiseuille flow), to
high frequencies, where the micro-scale flow is dominated by inertial effects. Depending on what assumption
that is made on the Reynolds number in the homogenization process, different large scale equations will be
obtained. In order to obtain the Biot equations, one formally assumes that the Reynolds number appropriate
for the micro-scale flow, h2ωρf/µ = µ̃−1, say is of order unity, for details see [13]. This is a distinguished limit
in which viscous and inertial effects are in balance, and it readily allows the limits µ̃−1 ≪ 1 and µ̃−1 ≫ 1
subsequently to be investigated.

By substituting all these assumptions in (16) and matching terms multiplying the same power of ε, a number
of relations are obtained. These relations correspond to the behavior of the system in the limit when ε → 0.
By applying an averaging procedure to some of these relations (in order to average out the y dependence) the
Biot equations are obtained.

3.3. The fluid-cell problem

The viscodynamic operator Y (ω), see (7), and thereby the parameters ρa, b and F (ω), are related to the
space average over the micro-structure of the displacement of fluid relative to solid, see (5) and (6a). The
fluid-cell problem is a flow problem at the micro-scale which can be used to compute Y (ω).

Let us first define w(x,y), the displacement of the fluid relative to the solid (at the micro-scale), by

v0(x,y) = iω (u0(x) + w(x,y)) ,

where v0 and u0 are the first-order terms in the expansions of the fluid velocity and solid displacement respec-
tively, see (17). In the homogenization procedure a set of equations for w is obtained. It is formulated as the
unsteady Stokes equation for w to be solved on a unit cube in the micro-scale,

−ω2ρfw(x,y) − iωµ̂∇2

y
w(x,y) + ∇yp1(x,y) = ∇x · σ0(x) + ω2ρfu0(x), in Df , (18a)

∇y · w(x,y) = 0, in Df , (18b)

w(x,y) = 0, on ∂Df = ∂Ds, (18c)

with the additional boundary condition that there should be periodicity across the unit cube, compare [13, eq.
(13)-(15), note the sign error in (15a)]. Here, σ0 is the first-order term in the expansion of the fluid stress tensor,
and p1 is the O(ε) term in the expansion of the fluid pressure. Also, µ̂ = µH2/h2. Note that the right-hand
side of (18) is independent of y while the left-hand side of (18) depends both on x and y. As y accounts for
variations on the rapidly varying micro-scale, and x accounts for variations on the slowly varying macro-scale,
and these two scales are assumed to be separated, the right-hand side can be regarded as a uniform forcing
when (18) is solved.

Since (18) is linear in w, the solution can be expressed as

w(x,y, ω) = W (x,y, ω)
(

∇x · σ0(x) + ω2ρfu0(x)
)

, (19)

where W (x,y, ω) is a matrix. Wij can be obtained by solving (18) with the right-hand side term ∇x · σ0(x) +
ω2ρfu0(x) replaced by a unit vector in the yj direction.

We now take the space average of (19) and obtain

w(x, ω) = W (ω)
(

∇x · σ0(x) + ω2ρfu0(x)
)

. (20)

Here, we have restricted our interest to macroscopically uniform media, that is assuming that the average W is
independent of x. Under the assumption that the matrix W (ω) is invertible, we can now rewrite (20) as

−ω2ρfu0(x) + [W (ω)]−1w(x) = ∇x · σ0(x). (21)
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Figure 1. Left; A 2D idealized micro-scale geometry. Each micro-scale cell is square. The
cells are separated by infinitely thin walls, and are connected by an opening in the middle of
each of the walls. Right; The geometry of a single cell. The sides of the cell are of unit length
in the (ŷ1, ŷ2)-coordinate system. Centered around the middle of each wall is an opening of
width 2a. The dashed lines indicate lines of symmetry.

Equation (21) corresponds to (5) and we can make the identifications u0 = Us and

[W (ω)]−1 = iωY (ω).

The term ∇x · σ0(x) can be identified with the right-hand side of (5). However, this is more involved and for
details we refer to [13].

4. Numerical solution of a fluid-cell problem

We now consider a two-dimensional idealized micro-scale geometry, as illustrated in Figure 1. Each micro-
scale cell is assumed to be square, with sides having physical length h. The cells are separated by infinitely thin
walls, and are connected to each other by an opening in the middle of each wall. Our goal in this section is to
compute the viscodynamic operator Y (ω) corresponding to this geometry.

4.1. Non-dimensionalization

In order to make the parameter dependence clear, we non-dimensionalize (18) by introducing dimensionless
variables

x̂ =
x

H
, ŷ =

y

H
, ŵ =

w

δ
, ŵ =

w

δ
, û0 =

u0

δ
, p̂1 =

p1H

κδ
, σ̂0 =

σ0H

κδ
, ρ̂ =

ρf

ρs
,

where δ is a length characteristic of the amplitude of fluid and solid displacements. The length H is related to
κ, ω and ρs by

H2 =
κ

ρsω2
,

that is, H corresponds to the wavelength of waves balancing fluid compressibility with solid inertia. The scaling
for ŷ is chosen such that |ŷ| = 1 at |x| = h, hence, a micro-cell is of unit length in the ŷ coordinate system. In
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the rescaled variables, equation (18) can be expressed as

−ŵ − iµ̃∇2

ŷ
ŵ +

1

ρ̂
∇ŷp̂1 =

1

ρ̂
∇x̂ · σ̂0 + û0, in Df , (22a)

∇ŷ · ŵ = 0, in Df , (22b)

ŵ = 0, on ∂Df , (22c)

and in addition we have periodicity, that is ŵ(ŷ1 + 1, ŷ2) = ŵ(ŷ1, ŷ2) and ŵ(ŷ1, ŷ2 + 1) = ŵ(ŷ1, ŷ2). Also

µ̃ ≡
µ

h2ωρf

is an inverse Reynolds number that is formally assumed to be of order unity.
In the transformed variables, the equation corresponding to (20) is

ŵ = Ŵ (ω)

(

1

ρ̂
∇x̂ · σ̂0 + û0

)

. (23)

After transforming back to original variables and rearranging we obtain

−ω2ρfu0(x) + ρfω2[Ŵ (ω)]−1w(x) = ∇x · σ0(x),

which corresponds to (21). Hence

Y (ω) = −iρfω[Ŵ (ω)]−1.

4.2. Numerical solution

The fluid cell problem (22) with the right-hand side replaced by the unit vector F = (1, 0)T was solved
using complex P2 − P1 Taylor–Hood1 finite elements, that is, the velocity was discretized using (complex)
piecewise quadratic polynomials and the pressure was discretized using (complex) piecewise linear polynomials.
The solution was computed on a 128 × 128 triangular mesh (resulting in a system with 297,478 unknowns)
using DOLFIN/FFC [20, 21, 25, 26]. The parameter values µ = 1.7 · 10−5Pa s, ρs = 103kg/m3, h = 10−4m,
ρf = 1.3kg/m3 were used. The solution ŵ(ŷ1, ŷ2, ω) was computed for a wide range of frequencies, ω ∈
(10s−1, 107s−1), corresponding to an inverse Reynolds number µ̃ ranging from 1.7

1.3 × (10−4 − 102) and a density

ratio ρ̂ = 1.3 × 10−3. For low frequencies, the flow is smooth and viscous, while for higher frequencies the
viscous effects decrease, see Figures 2 and 3.

The average ŵ(ω) is defined as the integral of ŵ(ŷ1, ŷ2, ω) over the fluid region of the unit cube multiplied by
the volume fraction of fluid in the unit cube, see [13]. As the solid walls for the current geometry are infinitely
thin, we arrive at

ŵ(ω) =

(

ŵ1(ω)

ŵ2(ω)

)

=

∫ ŷ2=0.5

ŷ2=−0.5

∫ ŷ1=1

ŷ1=0

ŵ(ŷ1, ŷ2, ω)dŷ1dŷ2. (24)

Due to the symmetry of the flow, we have ŵ2(ω) = 0.

Two entries in the matrix Ŵ (ω) can now be computed using the relation (23) (recall that the right-hand side
has been replaced by the unit vector F = (1, 0)T ). We obtain

Ŵ 11 = ŵ1(ω), Ŵ 21 = 0.

1The Taylor–Hood element is a standard finite element that fulfills the Babuška–Brezzi condition necessary for convergence
(see [2, 11, 12]).
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Figure 2. Above, the real part of ŵ is plotted for ω = 10s−1 (top) and ω = 106s−1 (bottom).
This quantity corresponds to the instantaneous displacement field at t = 0. In both cases,
a = 0.2. The above plots were obtained on a 40 × 40 triangular mesh (a finer 128 × 128
triangular mesh was used when computing Y (ω)). The rightward pointing arrows along parts
of the cell boundary is due to the plotting program placing arrows directed along the positive
ŷ1 axis for zero-valued points.
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Figure 3. To further clarify the difference in the character of the displacement field in the
low- and high-frequency range, we above plot the norm of the real part of ŵ for ω = 10s−1

(top) and ω = 106s−1 (bottom). In both cases, a = 0.2, and the plots were obtained on a
128 × 128 triangular mesh.
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The remaining two entries can be computed by solving the fluid-cell problem with the right-hand replaced by
the unit vector G = (0, 1)T . However, due to the symmetry of the geometry we find

Ŵ 12 = 0, Ŵ 22 = ŵ1(ω),

and we arrive at

Ŵ (ω) = ŵ1(ω)I,

where I is the identity matrix. Hence, in this case the viscodynamic operator Y (ω) is a scalar,

Y (ω) = −iρfωŵ
−1

1 (ω). (25)

Using (24) and (25), we can compute Y (ω). In Figure 4, the modulus and the phase of Y (ω) are plotted as
a function of ω for different values of a, the size of the openings between the cells. In order to verify that the
computed solutions have the right asymptotic behavior, we consider a large range of frequencies. As expected
from (7), Y (ω) asymptotes towards a real, positive value as ω → 0, and for large values of ω, Y (ω) is linear in
ω with a purely imaginary constant of proportionality. The latter limit captures the added mass term φρf + ρa

in (7) which is dominant at high frequencies. At high frequencies, viscous effects are confined to boundary layers
at the edge of the cell of width (µ/ωρf )1/2 ≪ h. These contribute to the O(ω1/2) viscous correction F in (7).

5. Speed of sound

In this section we will first derive an expression for the speed of sound in Biot materials, in terms of the bulk
material parameters discussed in Section 2. We will then specifically study the speed of sound in the parameter
ranges valid for lung parenchyma. We find that due to the characteristics of the parenchyma, it is relatively
easy to obtain estimates of the elastic parameters A, N , Q and R (which however also can be obtained by
solving the solid-cell problem). We then discuss how the speed of sound depends on the parameters related to
fluid motion in the porous material, ρa, b and F (ω) (which via the viscodynamic operator Y (ω) can be obtained
by solving the fluid-cell problem), and use parameter fitting to show that the Biot model yields a frequency
dependence of the speed of sound which is in qualitative agreement with the measurements in [5]. From a
micro-structure problem it is straightforward to obtain the frequency dependence of the speed of sound for that
specific micro-scale geometry. However, by using a parameterized bulk model (the Johnson model, see (34)
below, which gives an approximation of the frequency dependence), it is possible to study the bulk material
behavior for whole parameter ranges, making it easier to understand what different types of behavior can be
expected.

5.1. Speed of sound for Biot materials

Three different kinds of waves can propagate in a Biot material, two compression waves and one shear wave,
see [6]. The two compression waves are denoted the slow and the fast wave respectively. The fast compression
wave corresponds to sound propagation. In order to obtain the wave propagation speeds for the compression
waves, we follow [6] and apply the divergence operation to (8). We obtain

−ω2 (ρ̃11e + ρ̃12ǫ) = ∇2 (Pe + Qǫ) , (26a)

−ω2 (ρ̃12e + ρ̃22ǫ) = ∇2 (Qe + Rǫ) , (26b)

where e = ∇ · Us, ǫ = ∇ · Uf and P = A + 2N . We make the ansatz

e = C1e
iqx, (27a)

ǫ = C2e
iqx. (27b)
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Figure 4. Modulus (top) and phase (bottom) of the viscodynamic operator Y as function of
the frequency ω for different values of a = 0.1, 0.2, 0.3, 0.4.
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The wave speed of these waves is
V = ω/q.

Substituting (27) into (26) gives

(

P − zρ̃11 Q − zρ̃12

Q − zρ̃12 R − zρ̃22

)(

C1

C2

)

= 0, (28)

where z = V 2. Equation (28) has a non-trivial solution only if the matrix determinant is equal to zero. This
gives a quadratic equation for z,

(ρ̃11ρ̃22 − ρ̃2

12)z
2 − (P ρ̃22 + Rρ̃11 − 2Qρ̃12)z + (PR − Q2) = 0. (29)

Solving (29) yields

V 2

fast,slow =
∆ ±

√

∆2 − 4(ρ̃11ρ̃22 − ρ̃2
12

)(PR − Q2)

2(ρ̃11ρ̃22 − ρ̃2
12

)
, (30)

where the positive sign gives the wave propagation speed of the fast wave and

∆ ≡ P ρ̃22 + Rρ̃11 − 2Qρ̃12.

5.2. Parameter ranges valid for lung parenchyma

From a number of so-called gedanken experiments, Biot derived expressions for the elastic constants P , Q
and R as functions of φ, κ, Ks, Kb and N ,

P =
(1 − φ)(1 − φ − Kb/Ks)Ks + φKsKb/κ

1 − φ − Kb/Ks + φKs/κ
+

4

3
N, (31a)

Q =
(1 − φ − Kb/Ks)φKs

1 − φ − Kb/Ks + φKs/κ
, (31b)

R =
φ2Ks

1 − φ − Kb/Ks + φKs/κ
, (31c)

see [10] or [1, p. 118-122]. Here Kb is the bulk modulus of the solid frame at constant fluid pressure, and N is
the shear modulus of the frame. As approximations for Kb and N we use measured values of the bulk modulus
and shear modulus for human lungs, see Lai-Fook and Hyatt [23] where it is investigated how these values vary
with lung volume and age. We use Kb = 104 Pa and N = 103 Pa.

In the parenchyma, we have a porous solid with gas-filled pores. Since a solid is much stiffer than a gas, that
is, Ks ≫ κ, and parenchyma is a material with a weak frame, that is, Kb, N << κ, Ks, the expressions for P ,
Q, R may be simplified to

P = Kb +
(1 − φ)2

φ
κ +

4

3
N, (32a)

Q = (1 − φ)κ, (32b)

R = φκ, (32c)

see [1, p. 122-124].
We will now discuss the relation between the speed of sound for a Biot material (30) and the speed of sound

predicted by Woods’ formula (1), for details see [17]. In the limit |α̃∞(ω)| → ∞, it is straightforward to show
that the expression for the wave speed of the fast wave, (30), simplifies to

V 2

fast =
H

(1 − φ)ρs + φρf
, (33)
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where

H = P + 2Q + R =
Ks + (φKs/κ − (1 + φ)) Kb

1 − φ − Kb/Ks + φKs/κ
+

4

3
N.

Note that (33) is independent of frequency. From the definition of α̃∞(ω) in (11), it can be seen that a large
value of |α̃∞(ω)| is characteristic of situations where the fluid motion relative to the solid is very restricted, as
in the low frequency limit, ω → 0, and also if the viscous drag coefficient b is large. In these two cases, the
relative motion is restricted by large viscous forces. The fluid can also be locked to the solid by a large inertial
effect, that is a high tortuosity α∞.

As mentioned above, parenchyma is a material with a weak frame, that is

Kb, N ≪ κ, Ks.

In this limit, the speed of sound Vfast given by (33) asymptotes towards Wood’s formula, (1). Expressions for
the deviation from Wood’s formula are given in [17, p. 271].

To summarize, for a material with a weak frame, the speed of sound is always close to the value predicted
by Wood’s formula in the low frequency limit. If the fluid motion relative to the solid is very restricted (as e.g.

in the model with non-communicating air bubbles, [36]) the speed of sound will be constant, independent of
frequency. Otherwise the speed of sound will be frequency dependent.

We now use equation (30) to demonstrate how the speed of sound varies depending on the parameters σstatic

and α∞. We use (32) for P , Q and R, and approximate the correction factor F (ω) using the Johnson model,

F (ω) =

√

1 − iω
4µρfα2

∞

φ2(σstatic)2Λ2
, (34)

see Johnson et al. [18] or e.g. Göransson [16] and references therein for an exhaustive discussion of this model.
Here, Λ is the so-called viscous characteristic length, a parameter introduced in [18].

In Figure 5, the speed of sound is plotted for various combinations of values of σstatic and α∞. The remaining
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Figure 5. Speed of sound as function of frequency in Biot materials for some different values
of static flow resistivity and tortuosity; σstatic = 106kg/m3s, α∞ = 100 (solid line), σstatic =
108kg/m3s, α∞ = 1.2 (dashed line), σstatic = 106kg/m3s, α∞ = 1.2 (dash-dotted line), σstatic =
104kg/m3s, α∞ = 100 (dotted line). In all cases µ = 1.7 · 10−5Pa s, ρf = 1.3kg/m3, κ =
1.5 · 105Pa, φ = 0.75 and Λ = 1.25 · 10−4m.

parameters have been chosen as follows. As in the fluid cell problem we have used µ = 1.7 · 10−5Pa s and
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Volume of air [ml] Speed of sound [m/s]
500 Hz 5000 Hz

40 33.6 68.5
60 29.8 63.0
80 27.7 57.4
120 27.7 51.5
180 25.5 47.7
240 27.7 42.1

Table 1. Data obtained from [5, Figure 5].

ρf = 1.3kg/m3. For the bulk modulus of air κ = 1.5 · 105Pa was used (note that no value for Ks was needed
as the simplified expression (32) was used for P , Q and R). The volume fraction of air in the parenchyma φ
was chosen in the middle of the physiological range to be φ = 0.75, see [36]. Information on Λ for parenchyma
was not available, therefore we have here used a typical value for polymer foam, Λ = 1.25 · 10−4m. As expected
from the discussion above, the speed of sound in the low frequency limit ω → 0 asymptotes towards Wood’s
formula, independent of the values of σstatic and α∞. As the frequency increases, the speed of sound increases,
and the exact form of the graph depends on the values of σstatic and α∞. We note that in the example with a
very high value for the static flow resistivity, σstatic = 108kg/m3s, the speed of sound stays very close to Wood’s
formula for all the frequencies displayed in Figure 5. This behavior is in agreement with the experimental results
presented in [22, 24, 27, 32, 36].

In measurements presented in [5], the speed of sound through lungs of fetal sheep was found to be much higher
than predicted by Wood’s formula. Also, the speed of sound was strongly frequency-dependent. Qualitative
agreement with these findings can be obtained using the Biot model. In [5], lungs from fetal sheep were excised
without allowing air to enter the liquid-filled lungs. After withdrawing fetal liquid from the lungs, the lungs
had an average weight of 151.4 g. Air was then injected in the lungs, and the frequency dependence of the
speed of sound was measured with the lungs filled with 40, 60, 80, 120, 180 and 240 ml of air respectively. The
tissue density was assumed to be 1 g/ml. The results of these measurements are presented in [5, Figure 5]. By
measurements in that figure, we obtained values for the measured values of speed of sound at 500 Hz and 5000
Hz, see Table 1. The porosity of the lungs can be computed from the information about lung weight and volume
of air in the lungs. The parameters σstatic, α∞, Λ were fitted to the measured values using one iteration of the
Gauss-Newton method from the starting guess σstatic = 4 · 106kg/m3s, α∞ = 23, Λ = 1.25 · 10−4m, arriving at
the values σstatic = 5.25 · 106kg/m3s, α∞ = 26.5, Λ = 4.02 · 10−4m. In Figure 6, the speed of sound for the
fitted parameter values are plotted. The sound speed increases with frequency but falls with lung inflation.

6. Conclusions

Current modeling of the acoustic properties of the parenchyma is based on the assumption that the air motion
between the alveoli is negligible [36]. The parenchyma is considered as a homogeneous mixture of air and lung
tissue, and the speed of sound can then be computed from the average parenchyma density and the average bulk
modulus of the mixture. The speed of sound is independent of frequency and is given by the so-called Wood’s
formula (1). The predicted speed of sound has been confirmed in several experimental studies on human lungs
in volume ranges from residual volume to total lung capacity [22, 24, 27, 32]. However, for high lung volumes
the measured speed of sound in horse lungs is considerably higher than predicted by this theory [36]. Also, in
a recent study on lungs from fetal sheep, the measured speed of sound is considerably higher than predicted
by Wood’s formula and also strongly frequency-dependent [5]. In [36] it is suggested that the deviation from
Wood’s formula is due to increasing communication between alveoli as lung volume increases, and in [5] it is
suggested that fetal sheep might have a relatively open alveoli structure.
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Figure 6. Speed of sound for varying porosity corresponding to the measurements in [5]. The
fitted parameter values σstatic = 5.25 · 106kg/m3s, α∞ = 26.5, Λ = 4.02 · 10−4m are used.
Circles correspond to measurements at 500Hz and 5000Hz, see Table 1.

In this paper we consider the Biot equations as a model for the acoustic properties of lung parenchyma. In
the Biot model, effects of motion of fluid relative to the porous solid frame are included. We have reviewed
how homogenization can be used to derive the Biot equations from a model of the micro-structure of a porous
material. The bulk material parameters in the Biot equations related to the motion of fluid relative to solid
can be obtained by solving a flow problem at the micro-scale, the fluid-cell problem. We have solved a fluid-cell
problem numerically for an idealized micro-structure geometry for a wide range of frequencies.

The speed of sound in a Biot material is highly dependent on the micro-structure. Parenchyma is a porous
material with a weak frame. For materials with a weak frame and a micro-structure where the fluid motion
relative to the solid frame is very restricted, the speed of sound is close to Wood’s value for all frequencies. This
behavior is in agreement with the measurements in [22, 24, 27, 32, 36]. For materials with a weak frame and a
micro-structure where the fluid motion relative to the solid frame is less restricted, the speed of sound is close
to Wood’s value for low frequencies and increases with frequency. By parameter fitting we have shown that
the Biot model yields a frequency dependence of the speed of sound which is in qualitative agreement with the
measurements in [5]. Hence, the Biot equations provide a theoretical framework which can explain the different
types of variations of speed of sound that have been obtained in experimentally.

In future research we plan to use micro-structure simulations to investigate how changes in the detailed
structure of the parenchyma associated with diseases affect wave propagation properties.

The first author would like to thank Dr Nils-Erik Hörlin and Prof Gunilla Kreiss for interesting discussions and valuable
comments and Prof Peter Göransson for providing software for computation of wave speeds.
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