
Simulating Heart Valve Dynamics in FEniCS

Kristoffer Selim
Center for Biomedical Computing

Simula School of Research and Innovation
e–mail: selim@simula.no

Anders Logg
Center for Biomedical Computing

Simula Research Laboratory
Dept. of Informatics University of Oslo

Summary The present paper addresses the implementation of a coupled fluid–structure inter-
action problem in the free/open source software FEniCS. We demonstrate the ease by which the
coupled fluid–structure problem may be implemented in FEniCS. As an example, we consider a
simple two–dimensional model problem for the time–dependent displacement of a beam (”heart
valve”) in a pulsative flow.

Introduction
Recent years have seen an increase in the use of computer simulations for biomedical applica-
tions. Many of these simulations include demanding fluid-structure interaction (FSI) problems
coupled with complex constitutive relations for the fluid and the surrounding biological tissue.
Examples include [8, 16, 17, 4, 1].

FSI occurs when a fluid interacts with a solid structure, exerting stress that may cause defor-
mation in the structure and, thus, alter the flow of the fluid itself. This category of problems
are among the most important and, with respect to both modelling and computation, among the
most challenging multi-physics problems in biomedicine.

Simulating the blood flow in the aortic valve is a true FSI problem, with large forces and two-
way exchange of energy between the heart valve and the blood flowing through it. Pressure and
shear stress on the heart valve cause the aortic valve cusps to open and close, resulting in a
modified geometry for the blood flowing through the aortic valve.

Formulation of the Fluid–Structure Interaction Problem
Let Ω be a bounded polygonal subset of Rd containing an elastic solid immersed in an in-
compressible viscous fluid flow. We denote the time–dependent fluid domain by ΩF (t) and
the time–dependent structure domain by ΩS(t). It is assumed, for all time t, that ΩF (t) is
completely occupied by the fluid and that ΩS(t) is completely occupied by the solid. Further,
Ω̄ = Ω̄F (t) ∪ Ω̄S(t) and ΩF (t) ∩ ΩS(t) = ∅ , for all time t.

The Fluid Problem

We consider the simple case when the fluid flow is described by the time–dependent Stokes
problem in an Arbitrary Lagrangian–Eulerian (ALE) setting. We define the fluid domain defor-
mation mapping F : ΩF (0) × [0, T] → ΩF (t) and (X, t) 7→ x = F (X, t) where X denotes
the material position in the Lagrangian variables and x denotes the spatial position in Eulerian
variables. We thus define the fluid–domain velocity as

w(x, t) =
d(F (X, t), t)

dt
|x=F (X,t).

The fluid problem in the ALE framework reads: Find the velocity uF (·, t) : ΩF (t) → Rd and
the pressure pF (·, t) : ΩF (t)→ R such that

u̇F − w · ∇uF −∇ · σF (uF , pF) = fF (·, t) in ΩF (t),
∇ · uF = 0 in ΩF (t),

uF = gF,D(·, t) on ΓF,D(t),
σF (uF , pF)nF = gF,N(·, t) on ΓF,N(t),

uF (·, 0) = u0
F in ΩF (0),

pF (·, 0) = p0
F in ΩF (0),

(1)

for 0 < t ≤ T . Here, fF is a given body force and σF is the stress tensor defined as

σF (uF , pF) = 2ηε(uF)− pF I,

where ε is the strain tensor defined as

ε(v) =
1

2
(∇v +∇v>).

Furthermore, η denotes the dynamic viscosity and I the d × d identity matrix. The boundary
∂ΩF (t) is divided into two parts, ΓF,D(t) and ΓF,N(t), which are associated with the Dirichlet
and Neumann boundary conditions.

The Structure Problem

For the structure, we consider a quasi–static, isotropic, homogeneous body that undergoes small
deformations. At each time t, the structure problem reads: Find the displacement uS : ΩS(t)→
Rd such that

−∇ · σS(uS) = fS(·, t) in ΩS(t)
uS = gS,D(·, t) on ΓS,D(t)

σS(uS)nS = −σF (uF , pF)nF on ΓS,N(t) = ΓSF (t).
(2)

Here, fS is a given body force and σS is the Cauchy stress tensor defined as

σS(uS) = 2µε(uS) + λ(∇ · uS)I.

The Lamé parameters µ and λ are given by µ = E/(2(1 + ν)) and λ = Eν/((1 + ν)(1− 2ν))
where E is the Young’s modulus and ν the Poisson ratio. The FSI occurs at the interface ΓSF (t)
via the stress boundary condition in (2). We also notice that on the boundary ΓSF (t) we have
nF = −nS , for all time t.

Weak Formulation

The Fluid Problem

The weak formulation of the fluid problem (1) reads: Find (uF , pF) ∈ VF =
{(uF , pF) : uF ∈ L2(0, T ;H1(ΩF)) : uF |ΓF,D

= gF,D, pF ∈ L2(0, T ;L2(ΩF))} such that

aF ((v, q), (uF , pF)) = LF (v), ∀(v, q) ∈ V̂F , (3)

where V̂F = {(v, q) : v ∈ L2(0, T ;H1(ΩF)) : v |ΓF,D
= 0, q ∈ L2(0, T ;L2(ΩF))} and where

the bilinear form aF : V̂F × VF → R and the linear form LF : V̂F → R are defined as

aF ((v, q), (uF , pF)) =

∫ T

0

(v, u̇F − w · ∇uF) dt+

∫ T

0

(ε(v), σF (uF , pF)) dt

−
∫ T

0

(q,∇ · uF) dt,

LF ((v, q)) =

∫ T

0

(v, fF) dt+

∫ T

0

(v, gN,F)ΓF,N
dt.

Here, (·, ·) denotes the L2 inner product on ΩF and (·, ·)ΓF,N
denotes the L2 inner product on

ΓF,N .

The Structure Problem

The weak formulation for the structure problem (2) reads: Find uS ∈ VS =
{uS ∈ H1(ΩS) : uS |ΓS,D

= gS,D} such that

aS(v, uS) = LS(v), ∀v ∈ V̂S, (4)

where V̂S = {v ∈ H1(ΩS) : v |ΓS,D
= 0} and where the bilinear form aS : V̂S × VS → R and

the linear form LS : V̂S → R are defined as

aS(v, uS) =

∫ T

0

(ε(v), σS(uS)) dt,

LS(v) =

∫ T

0

(v, fS) dt−
∫ T

0

(v, σF (uF , pF)nF)ΓSF
dt.

Here, (·, ·) denotes the L2 inner product on ΩS and (·, ·)ΓSF
denotes the L2 inner product on

ΓSF .

The Finite Element Method

We consider a family {T } of meshes T = {K} of simplicial elements K. We denote the mesh
on the sub domain on ΩF (t) by TF (t) and on ΩS by TS(t). Further, we assume that all elements
along the interface between TF (t) and TS(t) are matching for 0 < t ≤ T .

The Fluid Problem

To discretize (3), we use Taylor–Hood elements [15] in space. We seek our approximate velocity
and pressure (UF , PF) ∈ W h

F = {(v, q) : v ∈ V h
F , q ∈ Qh

F}. Here, V h
F ⊂ VF is the space of

functions that are continuous piecewise quadratic vector–valued on TF , and piecewise constant
in time. The space Qh

F ⊂ QF is the space of functions that are continuous piecewise linear on
TF , and piecewise constant in time. Let 0 = t0 < t1 < ... < tN = T be a partition of [0, T] into
time intervals In ∈ (tn−1, tn] of length kn = tn − tn−1 .

The finite element method for (3) then reads: Find (Un
F , P

n
F) ≡ (UF , (tn), PF (tn)) with

(Un
F , P

n
F) ∈ W h

F for n = 1, ..., N such that

aF ((v, q), (Un
F , P

n
F)) = LF ((v, q)), ∀(v, q) ∈ Ŵ h

F . (5)

The test space Ŵ h
F is given by the set of piecewise constant functions in time with the same

variation as for W h
F in space [2]. Hence, the bilinear form aF (·, ·) and linear form LF (·) are

then defined by

aF ((v, q), (Un
F , P

n
F)) = (v, (Un

F − Un−1
F)k−1

n − w · ∇Un
F) + (ε(v), σF (Un

F , P
n
F))

− (q,∇ · Un
F),

LF ((v, q)) = (v, fF) + (v, gF,N)∂KF,N
.

The Structure Problem

For the structure problem (4), we simply seek the approximate displacement Un
S ∈ W h

S (tn) ⊂
WS(tn) where WS is the space of continuous piecewise linear vector–valued function on TS ,
satisfying the Dirichlet boundary condition. Hence, the finite element method for (4) reads: For
n = 1, ..., N find Un

S ∈ W h
S (tn) for n = 1, ..., N such that

aS(v, Un
S) = LS(v), ∀v ∈ Ŵ h

S (tn), (6)

where Ŵ h
S (tn) denotes the test space of continuous piecewise linear vector–valued functions on

TS vanishing on the Dirichlet boundary. The bilinear form aS(·, ·) and linear form LS(·) are
defined by

aS(v, Un
S) = (ε(v), σS(Un

S)),

LS(v) = (v, fF)− (v, σF (Un
F , P

n
F)nF)∂KSF

.

Model Problem

As a first step towards simulating the dynamic fluid–structure interaction in a heart valve, we
consider a simple two dimensional channel flow containing a single leaflet. As a model prob-
lem, we consider an immersed elastic beam in a pressure–driven pulsative flow in the two–
dimensional channel shown in Figure 1.

Figure 1: The two-dimensional channel with the immersed beam.

Boundary Conditions

For boundary conditions, we consider a pressure driven flow. To simulate a time–dependent
pulsative blood flow, we let the inlet pressure be given by the ODE

ṗin
F (t) = c1 θτ (t)− c2 χ(pin

F (t)) Q(t),

pin
F (0) = 0.

(7)

Here, θτ is a Heaviside step function with period τ and

Q(t) =

∫
Γout

F,N

uF · nF ds.

Furthermore, χ is the characteristic function such that

χ(pin
F) =

{
1, pin

F > 0,
0, pin

F ≤ 0,

and c1, c2 some given positive constants.

The outlet pressure is set to
pout
F (t) = c3 Q(t)

for a given positive constant c3.

These pressure boundary conditions are imposed weakly. The boundary integral of the Neu-
mann boundary is split up into

−
∫ T

0

(v, σF (uF , pF)nF)ΓF,N
dt = −η

∫ T

0

(v,∇uF · nF)ΓF,N
dt− η

∫ T

0

(v,∇u>F · nF)ΓF,N
dt

+

∫ T

0

(v, p̄FnF)ΓF,N
dt,

where p̄F is the solution to the above described ODE for the pressure. This term is denoted bcp
in Figure 3. Further, we assume that the term η

∫ T
0

(v,∇uF · nF)ΓF,N
dt = 0, i.e., the flow is

considered fully developed. For the Dirichlet part of the boundary, we consider pure homoge-
neous boundary conditions, i.e., no–slip condition for the fluid and the structure is attached to
the channel wall.

Implementation in FEniCS

FEniCS [3, 7, 9, 14, 10, 13, 12] is a collection of several stand-alone software components
which together form a program environment for solving ordinary and partial differential equa-
tions. FEniCS automates central aspects of the finite element method. One of these components
is the form compiler FFC [11] which takes as input a variational problem together with a set
of finite elements and generates low-level code for the automatic computation of the discrete
system of equations. FFC is available as a Python module allowing variational problems to be
specified and computed within the Python scripting environment.

To specify the weak form for the fluid problem (1) in FEniCS, one must first specify the function
space W along with a set of test functions (v, q) and trial functions (u, p) as shown in
Figure 2. The differential operators ∇· and ∇, are available as div and grad respectively.
The bilinear form a and the linear form L for the fluid may then be defined as shown in Figure
3. The forms for the structure problem are defined in a similar manner. The coupled FSI problem
(1)–(2) is solved by simple fixed point iteration as shown in Figure 4.

Create function spaces
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)
W = V + Q

Create test and trial functions
(v, q) = TestFunctions(W)
(u, p) = TrialFunctions(W)

Figure 2: Definition of function spaces and test and trial functions for the fluid problem.

Define epsilon
def epsilon(u):

return 0.5 * (grad(u) + transp(grad(u)))

Define sigma
def sigma(u, p):

return 2.0 * eta * epsilon(u) - mult(I, p)

Create forms
a = dot(v, u) * dx \
- dot(v, mult(grad(u), X1 - X0)) * dx \
+ k * dot(epsilon(v), sigma(u, p)) * dx \
- k * q * div(u) * dx \
- k * eta * dot(v, mult(transp(grad(u)), n))*ds

L = dot(v, u0) * dx \
- k * bcp * dot(v, n)*ds \
+ k * dot(v, f) * dx

Figure 3: Definition of the bilinear and the linear forms and for the fluid problem. Here, u0 and p0 are
solutions from previous time steps and X1 - X0 is the velocity of the fluid coordinate system scaled by
the time step kn. Further, dot(v,u) * dx denotes the inner product between two functions v and u.

def solve(problem):

while t < T:

FSI iteration
for i in range(maxiter):

Solve fluid problem
(u_F, p_F) = fluid_solver.solve()

Solve structure problem
(u_S, du_S) = structure_solver.solve(u_F, p_F)

Move structure mesh
problem.structure_mesh.move(du_S)

Move fluid mesh
problem.fluid_mesh.move(problem.structure_mesh)

Smooth mesh
problem.fluid_mesh.smooth(50)

Check for convergence
if norm(du_S) < TOL:

break

Check that the problem converged
if i == maxiter - 1:

raise RuntimeError, "FSI iteration did not converge."

Update problem
problem.update(t, u_F, p_F, u_S)

Move to next time interval
t += k

Figure 4: The FSI problem is solved using a simple fixed point algorithm. In each FSI iteration, the mesh
is moved according to the displacement given from the structure problem.

Results

In the simulations, shown in Figure 5, the structure responses to the pressure driven flow. Our
given ODE (7), pictured in Figure 6, yields a pulsative flow. The displacement of the beam
reaches its maximum when the inlet pressure hits its peak value. Also, the beam reaches its
original position when the inlet pressure is zero. The method presented in this paper works
for small deformations on the structure. However, if we impose larger deformations, the mesh
becomes folded and we cannot obtain a solution due to bad mesh quality.

(a) t = 0 (b) t = 0.06

(c) t = 0.12 (d) t = 0.18

(e) t = 0.30 (f) t = 0.50

(g) t = 0.75 (h) t = 0.99

Figure 5: The solution at different times t during one period.

Figure 6: The inlet/outlet pressure and the flux over five periods.

Conclusions

We have demonstrated a simple implementation of a FSI problem in FEniCS. For structures
that undergo small deformations, the approach with matching meshes is sufficient. However,
for large deformations the mesh folds and a solution cannot be computed. To overcome this we
intend to (i) improve the current mesh smoothening algorithms implemented in FEniCS (for
example using the variable diffusion method [6]) and (ii) consider Nitsche’s method [5] for FSI
problems on overlapping non-matching meshes.

References
[1] M.Astorino, J.-F.Gerbeau, O.Pantz and K.-F.Traoré Fluid–structure interaction and

multi-body contact: Application to aortic valves Comp. Meth. Appl. Mech. Engrg,
vol.doi:10.1016/j.cma.2008.09.012, 2008.

[2] K.Eriksson, D.Estep and C.Johnson Applied Mathematics: Body and Soul [volume 3] Springer,
2004.

[3] FEniCS FEniCS project URL: http://www.fenics.org/, 2009.

[4] A.Gerstenberger and W.Wall An extended finite element method / lagrange multiplier based ap-
proach for fluid-structure interaction Comp. Meth. Appl. Mech. Engrg, vol.197, 1699–1741, 2007.

[5] A.Hansbo, P.Hansbo and M.Larsson A finite element method on composite grids based on
Nitsche’s method ESIAM:M2AN, vol.37, 495–514, 2003.

[6] P.Hansbo and J.Heramansson A variable diffusion for mesh smoothening Commun. Nummer.
Meth. Engng., vol.19, 897–908, 2003.

[7] R. C.Kirby and A.Logg Efficient compilation of a class of variational forms ACM Transactions on
Mathematical Software, vol.33(3), 2007.

[8] M. G.Larson and F.Bengzon Adaptive finite element approximation of multiphysics problems:
A fluid structure interaction model Technical report, Institutionen för matematik och matematisk
statistik, 2009.

[9] A.Logg Automating the finite element method Arch. Comput. Methods Eng., vol.14, 93–138, 2007.

[10] A.Logg FFC User Manual, 2007 URL: http://www.fenics.org/ffc/.

[11] A.Logg et al. FFC, 2009 http://www.fenics.org/ffc/.

[12] A.Logg and G. N.Wells DOLFIN: Automated finite element computing Submitted, 2009.

[13] A.Logg, G. N.Wells, J.Hoffman and J.Jansson DOLFIN, 2006 http://www.fenics.org/
dolfin/.

[14] A.Logg, G. N.Wells, J.Hoffman and J.Jansson DOLFIN User Manual, 2007 URL: http://
www.fenics.org/dolfin/.

[15] C.Taylor and P.Hood A numerical solution of the Navier-Stokes equations using the finite element
technique. Internat. J. Comput. and Fluids, vol.1, 73–100, 1973.

[16] K.van der Zee, E.van Brummelen and R.de Borst Goal-oriented error estimation for Stokes flow
interacting with a flexible channel Int. J. Numer. Meth. Fluids, vol.56, 1551–1557, 2008.

[17] W.Wall and T.Rabczuk Fluid-structure interaction in lower airways of CT– based lung geometries
Int. J. Num. Meth. Fluids, vol.57, 653–675, 2008.

