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Abstract. Biology is becoming one of the most attractive fields of applica-
tion of mathematics. The discoveries that have characterized the biological
sciences in the last decades have become the most fertile matter for applica-
tion of classical mathematical methods, while they offer a natural environ-
ment where new theoretical questions arise. Mathematical Biology has born
many years ago and has developed along directions that now constitute its tra-
ditional background: population dynamics and reaction–diffusion equations.
Nowadays Mathematical Biology is differentiating into several branches, es-
sentially depending on the specific spatial scale size under consideration:
molecular scale, i.e., DNA transcription, protein folding and cascades, cel-
lular scale, i.e., motility, aggregation and morphogenesis, and macroscale,
i.e., tissue mechanics. Currently one of the most attractive scientific top-
ics is the mathematics of growth and remodelling of soft biological tissues.
This area, located at the crossroads of biology, mathematics and continuum
mechanics, concerns the statement and analysis of the equations that charac-
terize the mechanics, growth and remodelling of systems like arteries, tumors
and ligaments, studied at the macroscopic scale. These are open continuous
systems that pose new challenging questions, which go beyond the standard
mechanics that is traditionally devoted to closed systems. Past initiatives in
Oberwolfach have been devoted to the interaction between biology and math-
ematics in a broad sense. The idea to this minisymposium is to bring together
established researchers on this topic with newer entrants to the field and initi-
ate discussion on established and novel approaches towards the mathematics
of growth and remodelling of soft biological tissues.
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Introduction by the Organisers

One of the most challenging fields of applied mathematics and mechanics is the
Mechanics of Biology, a well-recognized and rapidly-expanding subject that is a
fundamentally interdisciplinary science. In contrast to engineering structures, liv-
ing organisms show the remarkable ability to change not only their geometry, but
also their internal architecture and their material properties in response to envi-
ronmental changes. Mechanics of Biology provides a number of fascinating new
areas of theoretical development, yet with clear applications, such as the func-
tional adaptation of hard tissues, healing of fracture in bones, wound healing of
the epidermis, regeneration of microdamaged muscles, general repair processes of
the cardiovascular system and the wide area of cancer research related to tumour
growth to name but a few.
Development of soft biological tissues is usually termed as growth and remodelling.
Here, growth will imply changes in mass, while remodelling will be reserved for
processes in which the tissue alters its microstructure while its mass remains con-
stant. Biological tissues undergoing growth and remodelling involve the strong
coupling of physical quantities and equations governing several distinct types of
physics: mass transport, chemical reactions, mechanics, charge transport, and heat
transport to name the most prominent ones. They therefore meet the definition
of complex systems. Growth involves chemically- and physically-distinct species
that exchange mass, momentum and energy among themselves and with external
reservoirs. A growing tissue is therefore an open system. A remodelling tissue
undergoes a change in its underlying geometric structure. In the language of con-
tinuum mechanics, it demonstrates an evolving reference configuration. Specific
outstanding issues arising from this mathematical richness of soft tissue growth
and remodelling are summarized in what follows.

Kinematics of growth

Since hard tissues typically undergo small deformations and behave nearly elasti-
cally in the range of interest, the first rigorous mathematical models for biological
tissues that were introduced in the mid 70s were restricted to growth of hard tis-
sues such as bones. It was only in the mid 90s, that geometrically exact models
for soft tissues were derived which also addressed the aspect of residual stress.
The key idea draws upon the central idea of finite strain plasticity by decom-
posing the deformation gradient into an inelastic, growth tensor, and an elastic
tensor. Both these tensors admit the interpretation of tangent maps. Similar
to the kinematic decomposition employed in modelling plastic deformation, the
elastic tensor is conjugate to the tissue stress via a potential defined by the strain
energy density. The growth tensor, in loose analogy to the plastic strain, translates
the growth/resorption of the solid phase or change in density of the fluid phase
to kinematic terms. Much work remains to be done on defining the constitutive
relation for the rate of the growth tensor and exploring its implications for the
physics of growth. The local nature of the growth-elastic decomposition inher-
ently leads to a residual stress. The presence of residual stress in a body poses
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several questions. One regards stability and has been recently investigated by Ben
Amar and Goriely [2005]. They analyze the stability of a grown neo-Hookean in-
compressible spherical shell under external pressure. The importance of residual
stress is established by showing that under large anisotropic growth a spherical
shell can become spontaneously unstable without any external loading.

Theory of open systems

Growth and resorption of soft biological tissue such as muscles, arteries, ligaments,
tendons and skin takes place as a result of volumetric mass sources and mass flux.
This is in contrast to hard tissue which demonstrates only surface growth. The ear-
liest models such as Cowin’s [1976] theory of “adaptive elasticity” treated growth
as a single species problem. This single species theory which is now recognized as
open system thermodynamics allows for a local variation in mass. Mathematically,
this variation manifests itself in additional source and flux terms in the balance
of mass. The derivation of open system balance laws for mass, linear and angular
momentum and energy then leads to the conclusion that the true stress, i.e., the
Cauchy stress in the language of nonlinear mechanics, is unsymmetric due to the
incorporation of a mass flux, see Epstein and Maugin [2000].

Growth laws

The mathematical modelling of growth thus crucially depends on the choice of
constitutive equations for the characteristic quantities, i.e., in this case the growth
tensor and the mass source and flux. In a single species open system framework,
guidelines for appropriate constitutive equations are provided by thermodynamical
considerations. One typical analysis of the admissible growth laws on the basis of
thermodynamic arguments is due to DiCarlo and Quiligotti [2002]. They state an
a priori dissipative principle, involving standard forces and accretive forces, that
has to be satisfied for any growth process. The exploitation of this inequality yields
constitutive relationships that provide a direct coupling between stress and growth
in terms of an Eshelby-like tensor. This approach has been further investigated
by Ambrosi and Guana [2007], who demonstrate that suitable assumptions on the
general model lead back to the one proposed by Taber and Eggers [1996] as a small
strain limit.

Mixture theory

Growth actually takes place as a result of reactions between numerous chemical
species that also undergo transport with respect to the surrounding fluid medium.
The corresponding mathematical models consist of reaction-diffusion equations
for a minimal set of chemical species, a reaction-driven mass growth/resorption
equation for the solid tissue phase and a transport equation for the interstitial
fluid. This delineation of the equations assumes that the solid phase does not
undergo transport, and that the interstial fluid lacks sources and sinks. However,
cell migration within a tissue is one phenomenon involving transport of what may
be considered a “solid” cell phase. Likewise, interstitial fluid sources/sinks must
be considered if lymph glands are present in the tissue. Both these exceptions are
central to modelling of solid tumours. With regard to the models outlined in this
paragraph, we note that diffusivities of some chemical species are known in water.
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The kinetics of many reactions behind cancerous cell growth are also understood to
some degree. However, the complexities of the mechanics have hindered a parallel
advance of understanding of stress-driven fluid transport.

Constitutive equations in multispecies theories

This last point on stress-driven fluid transport brings us to another critical issue:
the coupling between the solid and fluid phases of soft tissue has a direct impact
on the observed viscoelastic response of the tissue. Since fluid transport is driven
by stress-gradients it is completely determined by the nature of this coupling. Soft
tissue is “soft” because it is a composite material consisting of a porous, compliant,
solid in whose interstitial spaces resides an incompressible fluid. Treatment of
the coupled mechanics can draw from mathematical homogenization theory for
composite materials. The simplest assumptions are the limiting cases: uniform
deformation between the solid and fluid phases, or uniform stress between them.
The former leads to an upper bound on the stiffness of the soft tissue, and the
latter to a lower bound. More accurate models require an explicit treatment of
the mechanics, a question that comes down to the interaction forces between solid
and fluid phases. With a model for this force the individual linear momentum
equations for the solid and fluid phases can be solved. Such a step increases the
number of equations to be solved, but makes possible many gains: more accurate
viscoelastic tissue response, stress-driven fluid transport, and since the reacting
chemical species are advected by the fluid, more realistic growth models. Very
little progress has, however, been made toward theoretical characterization of the
solid-fluid interaction forces.

System stability and numerical stability

A major class of growth models is based on the coupling of a number of partial
differential equations for reaction-transport and momentum. For numerical effi-
ciency it is common to adopt an operator splitting algorithm for solution of the
coupled system of equations. Primitive variables are identified corresponding to
each partial differential equation. The solution proceeds by solving each equation
in turn while allowing the evolution of only some subset of the solution variables
for each equation solved. In general, multi-pass algorithms must be used to ensure
convergence to consistent sets of the solution variables. The alternative, a “mono-
litihic” solution of the coupled equations proves too costly when the the number
of coupled equations, or rather phenomena modelled, and system size increases.
While operator-splitting techniques offer advantages of numerical efficiency, there
arises a fundamental numerical issue related to stability: If uncontrolled growth
is observed, is it a result of instabilities inherent in the equations, or of a spurious
nature related to the numerical schemes employed? This issue has been addressed
to some degree for other coupled phenomena such as thermomechanics and the
more closely-related problem of flow through deformable porous media. However,
the presence of reaction terms in the growth problem, and the kinematics of the
rate of grwoth tensors, introduces a further element of complexity to this question
of stability that has gone virtually unaddressed. The proposed workshop will serve
as a forum for research addressing this specific question.
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Open problems

The topic of soft tissue growth is an attractive interdisciplinary issue, challeng-
ing for its implications in applied mathematics, theoretical mechanics, theoretical
biology and numerical mathematics. During this workshop, mainly during the
days but even more enthusiastically during long nights, we discussed the following
open mathematical issues that currently animate the discussion in the scientific
community:

• the necessity of a multiplicative decomposition of the gradient of deforma-
tion, its uniqueness, its physical interpretation in simple model problems,
its possible characterization by a lower dimensional form, e.g., spherical
growth

• the proper use of the theory of mixtures with particular focus on the
identification of the interaction terms

• the stability of grown states
• the introduction of thermodynamically admissible growth laws
• methods to hierarchically incorporate cellular scale information at a macro-

scopic spatial scale

Despite of all these tremendous developments, the mathematical aspects of the
mechanics of biology today is a field still in its infancy. During this one week
miniworkshop, the participants from different field critically discussed and helped
to classify state-of-the-art models which capture the essence of mechanical and bi-
ological interactions. Some contributions focussed on appropriate computational
simulation techniques to provide further insight into complex biomechanical phe-
nomena and quantify basic dependencies and trends.
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Abstracts

The theory of mixtures for growth and remodelling

Davide Ambrosi

(joint work with Guido Vitale)

Volumetric growth is addressed in the literature in two different theoretical frame-
works: the usual one–component continuum medium and the mixture theory. The
former scenario is simpler and growth is included in the description as a volumetric
mass source. Conversely, mass source takes the much more acceptable meaning
of exchange between species in a mixture context. It is an open question whether
the mixture theory is a more effective tool to investigate growth and remodeling
of soft biological tissues. In the first part of out talk we have showed that both
theories are unable to predict residual stress formation in its classical formulation,
unless suitably enriched by some other descriptor.

One possibility is to include the density of the solid component among the
variables the free energy can depend on [2]. In our talk it has been shown that
this generalization can actually account for the formation of residual stresses,
provided explicit non–trivial dependence on the position and solid component
density appears in the functional expression of the free energy:

(1) ΨI = ΨI(F, ρs
0, X) + Ψ̃I(ρβ

0 ), β 6= s,

where ΨI is the free energy of the mixture, F is the gradient of deformation of

the solid component and ρs its density, X are the material coordinates and ρβ
0 the

density of the β-th fluid component. At first order, functional derivative of the
strain energy yields the Piola tensor

(2) P̄
I

= 2

(
∂2ΨI

∂F 2

)

o

(F− 1) + 2

(
∂2ΨI

∂F ∂ρs
0

)

o

(ρs
0 − ρ̄s

0).

How to obtain these constitutive informations from experiments remains to be
explored.

An alternative approach is to introduce a multiplicative decomposition of the
tensor gradient of deformation.

(3) F = FeG

The tensor G accounts for the growth of the solid component in the tissue [4]. This
operation should be interpreted as the introduction of new degrees of freedom in
the system and it therefore calls for a dimensionally correspondent balance law
stated a priori, as duly prescribed by DiCarlo and Quiligotti [3]:

(4) B = C

where B and C are the external and internal remodeling forces, respectively.
Authors who have adopted the Kroner–Lee multiplicative decomposition of the

gradient of deformation have effectively predicted the mechanical behavior of resid-
ually stressed materials in a one–component framework and we have shown how
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this choice can be applied to mixtures too, thus yielding thermodynamical restric-
tions to be satisfied. The accretive forces include and represent all the stimula
to growth (and resorption) that can have very different physical and biochemical
origin; it is aim of ongoing investigation to unravel these mechanisms.

In our talk we have shown that a solid-fluid mixture description can exhibit
inner aspects on the dynamics of growth, i.e. the biophysical forces that drive
locally inhomogeneous growth, that remain somehow hidden in an abstract repre-
sentation in a one–component framework. Some authors have pointed out the role
of homeostasis as a target tension the system tends to by material re-organization
[5, 1]. The presence of the chemical potential µ in the evolution equation indicates
a role of species concentration in driving growth: according to our calculations a
simplest admissible growth law for a two–phases material (ℓ, s) is

(5) ĠG−1 = C + FT
r

∂ΨI

∂Fr
+ ρs

0

[(
µs +

p

ρs
T

)
−

(
µℓ +

p

ρℓ
T

)]
1.

where the superposed dot denotes differention in time, p is the pressure and µβ is
the chemical potential of the β-th component.

Our main concern is that mixtures provide some more insight of inhomogeneous
growth in terms of chemical equilibrium corresponding to non–homogeneous chem-
ical distributions of species, an explanation in terms of basic physical mechanisms
that one–component mechanics cannot capture. Equation (5) predicts that equi-
librium occurs when the elastic tension and the imbalance of chemical potential
are equal to the target C. Although for a closed system, as the one under con-
sideration, the Fickian dynamics tends to damp inhomogeneities in concentration
according to a reaction–diffusion law of Fick type, the chemical potential imbal-
ance can be sustained by non–movable species, as conjectured by Ateshian [2]. In
such a case the growth dynamics drives the material reorganization necessary to
satisfy the equilibrium in terms of residual mechanical stress: as Fr = FG−1, the
evolution of the growth tensor G tunes the first term at the right hand side of (5).
until equilibrium is reached.
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Growth of thin hypelastic soft tissues

Martine Ben Amar

(joint work with Julien Dervaux)

Shape of plants and other living organisms is a crucial element of their biological
functioning. Morphogenesis is the result of complex growth processes involving
biological, chemical and physical factors at different temporal and spatial scales.
Biological tissues are conventionally classified into two categories: hard tissues (e.g.
bones or teeth) and soft tissues (e.g. muscles, arteries, tendons, skin), depending
on their mechanical properties. Soft tissues, which typically exhibit anisotropic,
nonlinear, inhomogeneous behaviors, are often subject to large stresses and strains.
The theory of finite elasticity therefore forms an appropriate framework to describe
their properties [1, 2, 3], in the absence of visco-elastic effects. Along these lines,
much work has been done to establish constitutive relationships for specific biolog-
ical materials such as the skin, blood vessels, lung, brain, liver and kidney [3, 4],
although computing stresses and strains under applied external loads remains a
difficult task.

Observation of biological tissues has revealed the existence of internal stresses,
even in the absence of external loads. These residual stresses are induced by
growth [2] and affect the geometrical properties of tissues. Soft tissues may un-
dergo volumetric growth [5, 6] depending on space, orientation and the state of
stress within the body. Growth is a complex process involving biochemical and
physical reactions at many different length- and time-scales, that occur through
cell division, cell enlargement, secretion of extra-cellular matrix or accretion at
surfaces. The removal of mass is referred to as atrophy and occurs through cell
death, cell shrinkage or resorption. Because of completely different time scales
between relaxation via visco-elastic effects and the growth process itself which is
assumed very slow, the total deformation of the body is only due to both change
of mass and elastic deformations [7, 8, 9, 10, 11, 12].

Before (resp. after) the deformation, the body is in the reference (resp. cur-
rent) configuration and the place of each material point is denoted by X (resp. x).
We define the geometric deformation tensor by F = ∂x/∂X to describe locally
the overall deformation process. In order to model the growth process, we follow
Rodriguez et al [13] in making the following three assumptions: (i) there exists
a zero-stress reference state; (ii) the geometric deformation gradient F admits a
multiplicative decomposition of the form F = AG where G is a growth tensor
describing the change in mass and A an elastic tensor characterizing the reorga-
nization of the body needed to ensure compatibility (no overlap) and integrity (no
cavitation) of the body; (iii) the response function of the material depends only
on the elastic part of the total deformation.

Despite its simplicity, Rodriguez theory is yet to be investigated, because of the
complexity of finite elasticity although inhomogeneous and anisotropic growth has
been studied in details in some simple geometry [14, 15]. Here we focus on growing
thin samples subject to slow growth-induced finite displacements and we assume
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that the sample has time to relax to its equilibrium shape. This reduction of
dimensionality allows to derive the equilibrium equations whatever the constitutive
laws of the tissues. Under appropriate scaling assumptions, the resulting equations
are found to be an extension of the well known Föppl von Kármán (FvK) model,
a powerful theory for buckling instabilities, that are widely diffused in nature, but
which is also able to explain complex post-buckling phenomena such as crumpling.
Experimentally, it has been shown that growth may affect curvature in various
systems. In growing gels, both homogeneous growth under constraints [16] and
free inhomogeneous growth [17] have been investigated. Thermal expansion, as
well as desiccation, can also bend an elastic body and cause it to crumple as seen
in dead leaves. In living tissues, viruses such as the Cotton Leaf Crumple Virus
(CLCrV) modify the growth process and infected plants exhibit curled or crumpled
leaves but buckling can also occur during normal development. Some mushrooms’
or algae’s caps may undergo symmetry breaking, and adopt an oscillatory or cup
shape.

At the cellular level, a new milestone was reached with the discovery of the
CINCINNATA gene whose local expression affects growth and curvatures of the
Antirrhinum (snapdragon) leaf [18]. Complementary to the inhomogeneity of
growth, anisotropy has been shown to be crucial in the generation of shape. In-
deed ”a key aspect of shape -petal asymmetry- in the petal lobe of Antirrhinum
depends on the direction of growth rather than regional differences in growth rate”
[19]. To investigate the effects of anisotropy, for which our formalism is well
suited, we have studied the problem of a free elastic disk subject to homogeneous
anisotropic growth. Consider a disc, of initial radius Ri, subject to anisotropic
homogeneous growth, with free boundaries and no external loading. Referring
to a cylindrical system of coordinates (R, Θ, Z), the growth tensor is diagonal
and homogeneous: G = diag(1 + g1, 1 + g2, 1) neglecting the thickening of the
plate. If g1 and g2, respectively the radial and circumferential components of
the growth process, are equal, then growth is homogeneous and isotropic and no
residual stress appears: the disk remains flat. The relevant control parameter
is k = g2 − g1. The first case to consider is for k ≪ H2/R2

i that induces an
off-plane displacement ζ much smaller than H and is outside the scope of the
present theory. When k is of order H2/R2

i , which leads to ζ ∼ H , the bending
and stretching contributions are of the same order and a linear stability analysis
is performed. We look for a solution in which the in-plane fields (displacements
UR, UΘ and stresses σRR, σRΘ and σΘΘ) are independent of Θ. The off-plane
displacement, however, can depend on Θ. Since the disk is free, the boundary
conditions imply that there is no tension or torque at the free edge and reads
σRR(Ri) = σRΘ(Ri) = 0. The only convergent solution that fulfills these boundary
conditions, is σRR = σRΘ = 0 leading to UR(R) = (2R/3)(g2/2 + g1), UΘ(R) = 0
and a non-zero hoop stress σΘΘ = (−2kY )/3. We assume a solution with discrete
axial symmetry: ζ(ρ, Θ) = ξ(ρ) cos(mΘ)and find that the most unstable mode,
occurring when growth is mainly circumferential with (α = 6kR2/H2 > 0), is
characterized by m = 2 -a saddle shape- with a threshold value of α = 3.08.
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Figure 1. Top: The two first destabilized modes. (a) On the left k > 0,
the disc adopts a saddle shape, with m = 2, at the threshold α = 3.08. (b) On
the right k < 0 and the disc adopts an axially symmetric shape characterized
by m = 0, at the threshold α = −7.82. Bottom: shape changes in the
Acetabularia algae, the figures indicate the fraction of algae that undergo the
shape transition from an initial population of 85 plants, picture drawn from

[20].

An axially symmetric solution, i.e m = 0, appears when radial growth dominates
(α < 0), at the threshold value α = −7.82.

This simple model explains surprisingly well the changes of cap shape that the
algae Acetabularia acetabulum undergoes during its development. Experiments
performed in [20] show that radial growth occurs in the earliest stage of the de-
velopment, which leads to a symmetric conical shape. At later stage however
circumferential growth predominates to produce the saddle shape. For large de-
formations, those predictions can be easily checked by constructing a cone from a
disc of paper in which a sector defined by two radii is withdrawn and then either
replaced by a bigger one or just glued to close it. This simple demonstration illus-
trates the fact that singularities can arise from growth as observed in dead leaves
or in the leaves infected by the CLCrV.

Using the formalism introduced by Rodriguez et al, we have developed a theory
describing the behavior of thin elastic bodies subject to growth. By expliciting
the sheet’s small thickness, we showed all materials behave according to a gen-
eralized Hooke’s law and the equilibrium equations generalize the FvK equations
with growth. This extension describes a broad range of physical phenomena in-
volving mass reorganization, from biological growth to thermal dilatation, as well
as desiccation. Once observed in experiments, shape instabilities with well de-
fined wavelength may give relevant informations on the growth process itself. The
treatment presented in this letter also includes growth anisotropic effects. We have
shown that anisotropic growth induces rich structures like curling and crumpling.
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Elementary mechanics of muscular exercise

Antonio DiCarlo

The mathematical theory of growth and remodelling of living tissues—either soft
or hard—is still in its infancy, as unanimously acknowledged and amply testified
during the miniworkshop. In these conditions, the lack of a well-founded and
widely recognized axiomatic basis is only to be expected, and could even be re-
garded as a felicitous opportunity for the emergence of brand new ideas. However,
this is no excuse for disregarding clean axiomatics nor for being opportunistic and
sloppy in basic assumptions. At best, these are symptoms of a nasty infant disease
we should fight against. To this end, I chose to discuss a very simple—but not
too simple—macroscopic model of muscular exercise. Admittedly, nobody views
muscle contraction—as opposed to muscle buildup—as an example of growth or
remodelling. However, it is a fact that the very same formalism—which I call ma-
terial remodelling—fitly covers both phenomena (and many others, either in living
or non-living materials). At the same time, the utmost simplicity of the muscle
model I consider makes the mathematical structure and the physical motivation
of the underlying theory readily accessible.

Prelude. Let me invite you to an easy-to-do experiment: go to the gym, pick up a
dumbbell, raise your forearm at ninety degrees with your upper arm, and hold on.
Whoever has tried knows that an isometric exercise can be strenuous. However,



Mini-Workshop: The mathematics of soft biological tissues 2233

null work is being done: no motion, no power expended. How is it that a tough
isometric workout implies no work? What’s wrong? In actual fact, zillions of
minuscule myosin heads have to move back and forth inside your biceps in order
to keep your arm still under load. A decent model of muscular exercise, while
eschewing all molecular details, should account for their net results on the gym
scale. I consider the simplest macroscopic caricature of the muscular machinery
able to mimic actin-myosin sliding and myosin action as independent mechanisms.
Avoiding to lump them into a single effective mechanism is of the essence: in
fact, the effort demanded by an isometric exercise and the energy apportionment
required are simply cancelled in the lumping. Keeping track of the power expended
separately by each mechanism, my model encompasses all regimes of muscular
activity. In particular, it provides a non-null estimate of the energy required to
perform an isometric exercise for a given amount of time.

A two-bar model. A whole skeletal muscle is modelled as a telescoping unit com-
prised of two straight bars, sliding into one another. Each bar is assumed to
be uniformly tensed, and its present tension Ti(τ) (with τ the present time, and
i = a, p) to depend only on the present stretch λi(τ):

Ti(τ) = T̂i

(
λi(τ)

)
,

the stretch being defined as the ratio between the actual and the relaxed length
of the bar, both strictly positive:

λi(τ) := ℓi(τ)/ℓ∗i (τ) > 0 .

Both response functions

T̂i : ] 0, +∞ [ → R

are assumed to be one-to-one and monotonously increasing, with inverses

λ̂i := T̂ −1
i .

Be it noted that T̂i

(
1
)

= 0 ⇔ λ̂i

(
0
)

= 1. Labels a, p stand for active and passive,
respectively: while the a-bar is susceptible of remodelling, i.e., its relaxed length
may actually evolve in time, ℓ∗

p
is assumed to be constant: for all time τ ,

ℓ∗
p
(τ) = ℓ0 ⇒ ℓ̇∗

p
= 0

(a superposed dot denotes differentiation with respect to time). The overall length
of the two-bar unit at time τ is given by

L(τ) = ℓa(τ) + ℓp(τ) − s(τ),

where s(τ) measures the present overlap between the two bars. The above assump-
tions are clearly inspired by the way actin and myosin filaments are organized in
sarcomeres and myofibrils. A quote from Andrew F. Huxley [1] is to the point:

Length changes in muscle take place by relative sliding of two
overlapping sets of filaments, composed respectively of myosin and
actin. Tension is generated in the overlap regions by cross-bridges
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formed by the heads of myosin molecules, which attach to an ad-
jacent actin filament, exert force and detach. Attachment ends
when a molecule of ATP binds to the myosin head.

In conclusion we have to deal with 4 DOFs overall, the evolution of the muscle
during an exercise being parameterized by the extended motion

(1) τ 7→
(
ℓa(τ), ℓp(τ), s(τ), ℓ∗

a
(τ)

)
.

The governing equations are obtained following the uniform procedure set forth
in [2]. The equations corresponding to the first three DOFs in (1) are standard,
while the fourth is not.

Power and balance. The total power expended is assumed to be given by the sum

(2)
(
Roℓ̇∗

a
+ FL̇

)
+

(
Riℓ̇∗

a
+ Cṡ − Taℓ̇a − Tpℓ̇p

)
,

where parentheses group the outer and the inner contribution, in this order. In (2)
F is the (standard) force applied to the muscle ends by the tendons; Ro and Ri are
the outer and inner remodelling forces, Ro representing the essential interaction
with the chemical degrees of freedom, which are left out—but not ignored!—by
the model; C is the (standard) force exchanged between the two bars, which—as
established by the assumptions in (2)—are connected in series.

The principle of virtual power yields the 4 balance equations:

Ta = Tp = C = F,(3)

Ro+ Ri = 0 .(4)

Energetics. The free energy is assumed to be the sum of the elastic energies of the
two bars—the energy apportion from biochemical sources being accounted for by
the outer remodelling force Ro:

Ψ(τ) = Ψ̂a

(
λa(τ)

)
+ Ψ̂p

(
λp(τ)

)
.

A dissipation principle [2, 3] is enforced, requiring that the power dissipated—
defined as the difference between the power expended along a motion and the
time derivative of the free energy—should be non-negative:

(5) −
(
Riℓ̇∗

a
+ Cṡ − Taℓ̇a − Tpℓ̇p

)
− Ψ̇ ≥ 0.

A distinguished set of constitutive assumptions satisfying identically inequality (5)
is the following (a prime denotes differentiation):

T̂i = Ψ̂′
i ,(6)

C = −(1/M)ṡ (with M>0) ,(7)

Ri = λaT̂a(λa) − D ℓ̇∗
a

(with D>0) .(8)

Note that the additive structure of the right side of (8) is a necessary conse-
quence of the dissipation principle postulated. In particular, the energetic term

λaT̂a(λa) = λaΨ̂
′
a
(λa) is the pertinent Eshelby coupling between hyperelasticity

and remodelling of the a-bar.
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Evolution equations. Substitution of eqs. (6–8) into (3) and (4) yields the equa-
tions determining the time rates of the overlap s and of the relaxed length of the
a-bar ℓ∗

a
:

ṡ = −MF,

D ℓ̇∗
a

= λ̂a(F )F + Ro,

plus the rate-independent balances T̂a(λa) = T̂p(λp) = F .

Biochemical power expended. It is readily seen that in an isometric (L̇ = 0) and

isotonic (Ḟ = 0) exercise the outer power coincides with the power expended by
the outer remodelling force and is non-null (unless F = 0):

Roℓ̇∗
a

=
(
1 + DM /(λ̂a(F ))2

)
MF 2.

Note that λ̂a(F ) = 1 + O(F ) . Hence, Roℓ̇∗
a

= (1 + DM)MF 2 + DM
2 O(F 4).

Consider, however, that there is no reason why the mobility M and the resistance
(or inverse mobility) D should not depend on F .
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Mathematical modelling of solid tumor growth

Krishna Garikipati

(joint work with Harish Narayanan, Karl Grosh, Ellen M. Arruda)

The classical view of growth in biology is that of a problem of geometry. This
was the approach of D’Arcy Thompson [1] who was most interested in the form of
horns, tusks, antlers, shells, and other structures. This view of growth was adopted
by Skalak [2] who made very effective use of kinematics as developed in continuum
mechanics to compute, via growth velocities and velocities of generating cells, the
forms of biological structures that Thompson described.

A quite different view prevails in modern biology, where growth means an in-
crease in mass [3]. This is the view adopted in my talk. Notably, there is a robust
debate ongoing in biology, spurred by recent work on the growth of organisms by
[4]. These authors considered the “energy usage”, measured by metabolic rates,
of organisms to model growth. They proposed a law of the form

(1) B︸︷︷︸
∝m3/4

= NcBc︸ ︷︷ ︸
∝m

+ Ec
dNc

dt︸ ︷︷ ︸
∝ dm

dt

.
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Here the left-hand side is the total metabolic rate, which they argued is propor-
tional to the mass raised to the 3/4 power. The first term on the right-hand side
is the rate of energy consumption required to maintain the critical functions of the
organism, and is proportional to the mass. The last term is the energy consumed
for growth, and is proportional to the rate of change of mass. With this law West
and co-workers were able to match the growth data of biological organisms across
27 orders of magnitude in mass—from molecules, through sub-cellular organelles
and cells, to the largest animals and plants [5]. Their model has come to be called
a universal law. It has, of course, attracted its share of criticism, mainly directed
at the 3/4 power, which the authors jusified on the basis of the scaling of the
terminal vasculature in organisms.

The current continuum mechanical treatment of growth marries these views of
changes in form and mass. It has produced a large body of work: [6], [7], [9],
[10], [11], [12], [8], to name just a few. This approach has exposed the contin-
uum field theoretic nature of growth at macroscopic scales. There remain some
open problems and controversies, which other participants in this workshop will
discuss. I want to take a different approach. After summarizing the mathematical
formulation, I ask what use it is.

For this purpose I will consider tumor growth as the model problem. The
equations are

∂ρm

∂t
+ ∇ · (ρmvm) − πm = 0

∂ρc

∂t
+ ∇ · (ρcvc) − πc = 0

ρs ∂vs

∂t
+ vs · ∇vs = ∇ · σ + ρs(qs + g)

∂ρf

∂t
+ ∇ ·

(
ρfvf

)
= 0

ρf ∂vf

∂t
+ vf · ∇vf = ∇p + ρf(qf + g),

∂ρn

∂t
+ ∇ · (ρnvn) − πn = 0

where m is the extra-cellular matrix; s is the solid (extra-cellular matrix + cells);
c is the cells; f is the fluid; and n represents chemical species such as enzymes,
nutrients, by-products and others. Additionally, ρ represents concentrations, v

represents velocities, σ is the stress in the solid, p is the fluid pressure, q represents
interaction body forces between solid and fluid phases, g represents external body
forces, and π represents mass sources.

Using this set of equations, complemented by constitutive relations, the growth
of soft tissue tumors can be modelled in some detail. The figure below shows the
horizontal displacement contours and displacement vectors of a tumor after 100
days of growth. Included in this computation are the hyperelastic solid phase;
cells that proliferate, migrate under haptotaxis and diffusion, apply passive and
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Figure 1. Constrained growing tumor

active stress on the extra-cellular matrix; and chemical species representing the
nutrition for cells, enzymes and by-products. The fluid phase and viscoelasticity
were not included in the computation because their effects are not relevant over
the large time scale involved (100 days). On the right the tumor encounters soft
contact, meant to model a neighboring organ imposing a constraint on its growth
in that direction.

Such computations can be useful to test the complex growth dynamics of tu-
mors, the effect of drug doses and protocols, mechanical effects on vasculature and
so on.

There also are some emerging possibilities that these models will shed greater
light on the details of energy usage in growing tumors.
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Analysis of growth and diffusion dynamics in biological materials

Alfio Grillo

(joint work with Gabriel Wittum, Gaetano Giaquinta, Milan V. Mićunović)

We study a growing biological tissue as an open biphasic mixture whose phases
undergo exchange interactions. We assume that both the solid- and fluid-phase
are composed of several constituents allowed to be transferred from one phase
to the other. Because of growth and exchange, or transfer, source terms must
be accounted for in balance laws. We relate the source terms which are relevant
for our purposes with thermodynamic quantities defined at the pore scale of the
tissue. This procedure, carried out through the Theory of Homogenization [1],
aims to give growth a pore scale justification. Particular attention is given to
the exploitation of the Clausius-Duhem inequality and the kinematics of growth.
Since the mixture under investigation has to satisfy restrictions, we provide a
modified Clausius-Duhem inequality that, following Liu’s theorem, accounts for
constraints through the Lagrange multiplier technique [2][3]. Constraints, and
related Lagrange multipliers, are also introduced in the definition of Helmholtz
free energy densities in order to include constitutive laws for solid- and fluid-phase
mass densities less strict than incompressibility. We perform an analysis of our
constrained Clausius-Duhem inequality in the neighborhood of thermodynamic
equilibrium. This enables us to obtain Onsager relations that generalize some
results found in the literature about a thermodynamically consistent procedure
for determining an evolution law for growth and mass transfer. We show that
the driving mechanism for mass transfer and growth is related to a generalized
Eshelby-like tensor, which accounts for chemical potential. For example, we find
that the inhomogeneity velocity “gradient” due to mass transfer can be given the
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expression

(1) Ltr
S = M :

{
(GF − GS)IN −

[(
AF IN − bF

)
−

(
ASIN − bS

)]}
,

where IN is identity in the natural configuration, GF and GS are Gibbs free energy
densities of the fluid- and solid-phase, respectively, and second order tensors bF

and bS are Eshelby-like stress tensors defined by

bF := AF IN −
N−1∑

β=0

CβF
∂AF

∂CβF
IN ,(2)

bS := ASIN −

N−1∑

β=0

CβS
∂AS

∂CβS
IN − F el

S ·
∂AS

∂F el
S

.(3)

In Equations (2) and (3), CβF and CβS denote the mass fractions of the β-th
constituent present in the fluid- and solid-phase, respectively, AF and AS are
Helmholtz free energy densities, and F el

S is the elastic part of deformation experi-
enced by the solid-phase. The terms

(4)
∂AF

∂CβF
=: µ̃βF and

∂AS

∂CβS
=: µ̃βS

are said to be “reative chemical potentials”, and are identified with the quantities
µ̃βF := µβF − µNF and µ̃βS := µβS − µNS , with µNS and µNF absolut chemical
potentials of constituent N in the solid- and fluid-phase, respectively.
In our opinion, Equation (1) seems in agreement with other previous theories (cf.,
for example, [4]).
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Growth, optimization and configurational forces

Anders Klarbring

(joint work with Bo Torstenfelt)

In order to obtain a simplified model of growth mechanics we consider the standard
linear elastic stiffness equation of a discrete or discretized structure:

(1) F = K(ρ)u.



2240 Oberwolfach Report 39/2008

Here u is the vector of nodal displacements and F is the corresponding force
vector. The symmetric positive semi-definite stiffness matrix K(ρ) depends on a
vector ρ = (ρ1, . . . , ρn)T of configurational variables such that

K(ρ) =
n∑

i=1

Ki(ρi), Ki(ρi) = gi(ρi)K̃i

where n is the number of elements in the structure, Ki(ρi) is an element stiffness

matrix and K̃i is such a matrix for a unit value of the function gi(ρi) ≥ 0. As
a particular case of this function we study the one used in the bone remodeling

formulation of Harrigan and Hamilton [1]: gi(ρi) = ρp
i , where p = n/m, ρ

1/m
i

represents the density of the material and the constant n describes how the stiffness
relates to this density. It turns out experimentally that n is closed to the value 3.

A hypothesis of optimum bone structure leads to considering the following op-
timization problem:

(G) min
ρ∈K

f(ρ), f(ρ) =
1

2
F T u(ρ) + µ

n∑

i=1

aiρi,

where K is a set of admissible configurational variable, including a constraint
giving positive values. It is assumed that K(ρ) is nonsingular for all ρ ∈ K, so
that the displacement can be seen as a function of the configuration, i.e., u =
u(ρ) = K(ρ)−1F . The first term in f(ρ) is known as the compliance and, by (1),
equals the strain energy. The last term can be interpreted as a cost of material,
where µ is a constant regulating the relative importance of the two terms of f(ρ),
and the constants ai represent the costs for individual elements.

An indirect but from several point of views very useful approach to solving and
analyzing (G) is to consider a gradient flow (dynamical system, ODE, neurody-
namical) reformulation of the problem: Let ρ be a function of a time-like variable
t and solve, for some initial condition, the ordinary differential equation

(2) ρ̇ = λΠK(ρ,−∇f(ρ)).

Here λ is a positive constant, a superposed dot indicates a derivative with respect
to t and ΠK(ρ,−∇f(ρ)) is the Euclidean projection of −∇f(ρ) on the tangent
cone of K at ρ.

Problem (G) and the ordinary differential equation (2) are connected by the fact
that if the Hessian ∇2f(ρ) is positive definite at a stationary point ρ of (G), then
every solution of (2) that starts sufficiently close to ρ will converge (exponentially)
towards it. A slight extension of a result by Svanberg [2] shows that (G) is a convex
problem for n ≤ m, meaning that for such values, solution curves of (2) will always
converge to a solution of (G). The condition n ≤ m was also found by Harrigan
and Hamilton [1]. In fact, they found that this condition is also necessary for
convexity. They interpret it as one of stability for the evolution equation.

Disregarding the constraint ρ ∈ K, it can be shown that (2) reads

(3)
1

λ
ρ̇i =

1

2
uT dKi(ρi)

dρi
u − µai,
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and we conclude that growth is positive if

pρ
(p−1)
i

1

2
uT K̃iu > µai.

Algorithm: We suggest a simple Euler-type numerical algorithm for the solu-
tion of equation (2), see [3]. Given a solution ρ(t) at time t, we want to calculate
the solution at time t + ∆t. By an explicit time discretization of equation (2) we
calculate test values ρ̂i(t + ∆t) from

(4)
ρ̂i(t + ∆t) − ρi(t)

∆t
= −λ

∂f(ρ(t))

∂ρi
.

After such a test value is calculated, we make a projection onto the constraint set
K in order to obtain ρi(t + ∆t). The gradient of f can be calculated as

∂f(ρ(t))

∂ρi
= µai − ei(ρ(t)), ei(ρ) = pρ

(p−1)
i

1

2
uT K̃iu.

Thus, formula (4) reads

(5)
ρ̂i(t + ∆t) − ρi(t)

∆t
= λ[ei(ρ(t)) − µai].

The optimality criteria algorithm of structural optimization, see [4], is an algo-
rithm for solving directly the optimization problem (G). Thus, there is no explicit
reference to an evolution of configurational variables in this algorithm. Never-
theless, a sequence of iterates from this algorithm is frequently interpreted in an
evolutionary sense and it would be interesting to compare such a sequence of iter-
ates to the sequence obtained when solving the gradient flow problem (2) by the
above Euler-type method. In the optimality criteria algorithm, when an iterate
ρn is known, the next iterate is obtained by first calculating the test value

(6) ρ̂n+1
i =

(
ei(ρ)

µai

)β

ρn
i ,

and then doing a projection onto K. The constant β is usually referred to as a
damping coefficient.

In order to compare (5) and (6) we note that the latter can be rewritten as

(7) ρ̂n+1
i =

(
1 +

ei(ρ) − µai

µai

)β

ρn
i

=

{
1 +

β

µai
(ei(ρ) − µai) + O

[(
ei(ρ) − µai

µai

)2
]}

βρn
i ,

which can be compared with (5). If ρ̂n+1
i = ρ̂i(t + ∆t) and ρ̂n

i = ρ̂i(t), (7) and (5)
coincide to the first order if ρi(t)β = ∆tλµai. This condition can generally not
be satisfied simultaneously for all i and t, and, even though (5) and (6) should
converge to the same solution, it becomes difficult to interpret non-convergent
iterates of the optimality criteria method as states of the evolution at a particular
time instant: something that is obviously possible in the Euler method. At the
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talk in Oberwolfach numerical solutions based on the optimality criteria algorithm
were presented.

Thermodynamics: We like to investigate the thermodynamics of a time evo-
lution of the system. To that end we disregard the constraint ρ ∈ K. Changes of
the displacement produces the power F T u̇, where a superposed dot means time
derivative, and where the force F represents the mechanical environment. Sim-
ilarly, changes in the configurational variable ρ produce the power rT ρ̇, where
r is an external configurational force representing the biochemical environmental
impact on growth. Note also that in most problems of biological growth the time
scale for changes in the biochemical environment is much larger than that of the
mechanical environment. Therefore, the force F should usually be regarded as an
average load.

The free energy of the structure is taken as

(8) Ψ =
1

2
uT K(ρ)u + Θ(ρ),

where the first term is the strain energy and the second term represents a part of
the internal energy that is purely associated with changes in ρ. We expect that
∂Θ/∂ρi > 0.

The following dissipation inequality, representing a mechanical version of the
second law of thermodynamics, is assumed to hold:

(9) Ψ̇ ≤ F T u̇ + rT ρ̇.

Inserting (8) into (9) gives

(10) (F − K(ρ)u)T u̇ +

n∑

i=1

[
ri −

∂Θ(ρ)

∂ρi
−

1

2
uT dKi(ρi)

dρi
u

]
ρ̇i ≥ 0,

where we have used the symmetry of K(ρ). The first term of (10) vanishes due
to (1). If we assume that ri has a local character in its dependents on the con-
figurational variable, i.e., ri is a function of u, ρi and ρ̇i, then (10) holds for all
evolutions if and only if

(11) ri −
∂Θ(ρ)

∂ρi
−

1

2
uT dKi(ρi)

dρi
u = ciρ̇i,

for some functions ci = ci(u, ρi, ρ̇i) ≥ 0.
For given functions F , K, r and c, equations (1) and (11) represent a system

of evolution equations for u and ρ. An essential difficulty is the choice of the
configurational force r. Comparison with a gradient flow formulation gives such a
choice. By letting ci = 1/λ and comparing (11) and (3) we obtain

ri = uT dKi(ρi)

dρi
u − µai + ∂Θ(ρ)/∂ρi.

The last term on the left hand side of (11) represents a sort of specific strain
energy. We note that r̃i = ri−∂Θ(ρ)/∂ρi represents a constitutive target function
for this mechanical entity and that this interpretation is a consequence of thermo-
dynamics (the dissipation inequality) and not an arbitrary assumption. To take
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a constant value for r̃i would correspond to the idea of homeostasis, used, e.g., in
soft tissue mechanics of arteries where circumferential and axial stresses approach
distributions that are constant across the thickness of the arterial wall.

Passive remodelling, i.e., r = 0, when the growth process does not interact
energetically with the biochemical environment, is of special concern. We note
that if ∂Θ/∂ρi > 0, the spontaneous evolution that occurs in the structure is
towards lower values of ρi, i.e., towards lower density of the bone.
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A cell-based continuum mechanics approach towards ventricular

growth and remodeling

Ellen Kuhl

(joint work with Serdar Göktepe, Markus Böl, Oscar Abilez)

Heart disease is the primary cause of death in industrialized nations, claiming
more than 16 million lives world wide each year. A leading cause of congestive
heart failure is myocardial infarction, caused by the loss of blood supply in the
myocardial wall. As a result, the functional units of the myocardium, the car-
diomyocytes, lose their contractile property, die, and induce changes in form and
function of the entire heart.
Within this presentation, we explore both short term and long term changes of
cardiac physiology in response to myocardial infarction. Short term changes af-
fect the cardiac conduction system of the heart, see, e.g., [4, 5]. They may result
in uncoordinated self-excitation caused by re-entrant spiral waves which re-excite
the tissue in an unphysiological way as illustrated in figure 1. Long term changes
involve altered material properties and changes in ventricular size in the form
adaptive growth and remodeling, see, e.g., [6, 8]. These changes help to maintain
cardiac output at a physiological level as demonstrated in figure 2. We present
our first attempts to model cardiac electrophysiology on the short time scale and
cardiac growth and remodeling on the long time scale with the help of finite ele-
ment based hierarchical whole heart models. Potential paths for verification and
validation of the computational model will be illustrated in terms of animal infarct
models based on non-invasive microCT, invasive fluoroscopic marker technologies,
see [7], and ECG data, see figure 3. We conclude by discussing novel passive sup-
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Figure 1. Virtual implantation of tissue engineered vascular
grafts onto the damaged myocardium (left). Synchronously con-
tracting neonatal rat ventricular cardiomyocytes seeded on poly-
dimethylsiloxane (PDMS) base layer, see [3], and multiscale finite
element simulation of actively contracting fibers seeded on a poly-
meric substrate, as described in detail in [2].

Figure 2. Patient-specific electrocardiogram based on general-
ized FitzHugh-Nagumo equations for excitable media. Human
heart (left) and its finite element discretization (middle), see [4].
Nonlinear finite element simulation of excited human heart (mid-
dle). In silico EKG generated from projection of heart vector
(right).

port devices and stem-cell based technologies as potential treatment strategies to
restore cardiac function after myocardial infarction.
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Figure 3. Ventricular growth and remodeling. Pressure
overload-induced hypertrophy in response to aortic stenosis, nor-
mal heart, and volume overload-induced dilation in response
to myocardial infarction. Sections (left), see [1], and finite el-
ement simulations based on multiplicative growth model with
microscopically-motivated growth laws (right).
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Growth and remodelling of soft biological tissues – Modelling

approaches and computational aspects

Andreas Menzel

(joint work with Magnus Harrysson, Victor Alastrué)

Soft biological tissues posses various types of microstructures on different levels of
observation. The interplay of mechanical, biological, and chemical effects results
in physical phenomena – such as growth and remodelling – directly observable
on a macroscopic scale. Commonly one distinguishes between surface and bulk
growth, which may affect mass and volume of the material body considered, and
remodelling effects that render the mechanical properties of the material to change
or rather adapt to the local loading conditions.

The formulations discussed in this contribution solely account for mechanical
effects and, moreover, are embedded into the theory of open systems so that all bal-
ance and constitutive equation reduce to the description of one single solid phase.
Key aspects of appropriate modelling approaches for bulk growth and remodelling
are (i) the incorporation of initial or adaptation-induced residual stresses, (ii) a
sound description of the material’s anisotropic properties within a finite deforma-
tion context, and (iii) the adaptation of the anisotropic material properties such
that the reorientation of macroscopic fibre families or rather turnover is captured.

Form a multi-scale computational modelling perspective one may either in-
troduce so-called structural tensors directly on the macro-level or determine the
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macroscopic material properties based on an appropriate homogenisation scheme.
The three approaches discussed in this contribution follow these lines.

Structural tensors: One the hand, use of the nowadays well-established mul-
tiplicative decomposition of the deformation gradient into a growth-related
contribution and an elastic part is adopted. The growth term allows to in-
corporate residual stresses and is assumed to be, in general, non-spherical
such that anisotropic growth is recaptured. On the other hand, the elastic
properties are also considered to be anisotropic. To be specific, two sym-
metric structural tensors of rank one are incorporated as additional argu-
ments into the strain energy function as reflecting orthotropic response.
Furthermore, the general format of the growth tensor is reduced to be
symmetric – two principal directions additionally being assumed to coin-
cide with the elastic anisotropy directions as used for the definition of the
structural tensors. The adaptation process itself comes into the picture by
means of evolution equations for the eigenvalues of the growth tensor and
a reorientation formulation of its principal direction (which, furthermore,
directly includes the elastic properties via the structural tensors within
the strain energy function). While the saturation-type evolution of the
growth eigenvalues is driven by their energetically conjugate thermody-
namical forces, a deformation-driven formulation is chosen for the fibre
reorientation.

ODF-based structural tensors: Orientation distribution functions (ODF) pro-
vide an excellent framework to account for the dispersion of fibres. Their
second moment contribution as integrated over the orientation space takes
the interpretation as a generalised structural tensor. This quantity may
either reflect a spherical, uni-axial, or biaxial distribution. As elaborated
above, this generalised structural tensor is incorporated into the strain
energy function, which enables to account for the material’s anisotropic
properties. Moreover, the adaptation process is represented by means
of an evolution equation of this structural tensor, which itself depends
of the corresponding fourth order moment tensor. The particular model
proposed is based on two mechanically equivalent fibre families with the
distributions of both being assumed to be characterised by a von Mises
ODF.

ODF-based micro-sphere model: To further extend the ODF-based approach
towards a computational multi-scale modelling approach, an affine micro-
sphere model is adopted. In other words, the local deformation, as repre-
sented by the deformation gradient, is projected onto particularly chosen
directions on the unit-sphere such that the related scalar-valued stretch
can be used for simple one-dimensional constitutive relations. The corre-
sponding stress quantity on the macro-level is then obtained by straight-
forward integration with respect to the underlying unit-sphere. Further-
more, the individual integration direction are weighted by an ODF so that
anisotropic material properties are accounted for on this micro-level. By
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analogy with the previous formulation, two von Mises-type ODFs are com-
bined such that macroscopically orthotropic response is captured. The
particular example investigated refers to the composite structure of an
artery under internal pressure. It thereby turns out that the incorpora-
tion of initial residual stresses is of cardinal importance. This additional
inhomogeneous stress contribution was determined by means of the de-
formation state related to the so-called opening angle experiment, and
its incorporation obviously reduces the maximum stress level within the
vascular tissue.

One of the advantages of the ODF-based micro-sphere model consists in the
application or rather reduction to simple one-dimensional constitutive models.
The particular one used in this contribution is the well-established worm-like chain
model. In this regard, it seems to be of particular interest to (i) combine the ODF-
based micro-sphere model with a remodelling formulation and to (ii) account for
effects as active contraction or aging by means of appropriate evolution equations
or rather modifications of the physically motivated parameters that determine the
worm-like chain model.
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Collaborative computational frameworks and the growth problem

Harish Narayanan

(joint work with Krishna Garikipati, Anders Logg)

Growth in biological tissue is a direct outcome of cascades of complex, intra-
cellular, biochemical reactions involving numerous species, their diffusion across
cell membranes, and transport through the extracellular matrix. Both reaction
and transport are influenced by mechanics in a number of ways, and much of our
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modelling work thus far [1, 2] has been aimed at gaining a deeper understanding
of the biophysical bases underlying these influences.

When treated as a continuum (usually in the context of mixture theory [3]
to accommodate multiple interacting species, as in our previous work), a formal
axiomatic treatment can be used to derive a general set of governing equations
which specify how the mass, momenta and energy of each constituent species of
the tissue evolve with time. These relations do provide a great deal of insight
into the general behaviour of growing tissue treated as mixtures, the nature of
the coupling between different physics and, with the incorporation of additional
axiomatic principles (such as the Clausius-Duhem inequality), provide hints for
constitutive specification.

Even so, when attempting to tailor a general continuum field formulation for a
specific tissue growth problem, several basic modelling choices need to be made,
which include:

• Determining which species need to be incorporated (collagen, proteogly-
cans, different kinds of cells, extra-cellular fluid, sugars, proteins . . . )

• Appropriate constitutive relationships for the stress response of load-bear-
ing species

• Specific models used for the various biochemical reactions,
• Determination of realistic boundary conditions
• Judicious introduction of additional constraints (such as tissue saturation)

When attempting to address some of these fundamental questions, it often proves
useful to experiment in silico; constructing simple test cases to help shape ideas.
This requires a computational framework that is not only efficient, but functions
at a sufficiently high level so that it can evolve easily with our understanding of
the problem.

In this context, the FEniCS project (a collaborative project for the automation
of computational mathematical modelling based on the finite element method [4])
serves as an appropriate foundation to construct a computational tool kit specif-
ically tailored to the needs of the tissue growth modelling community. Since it
allows researchers to pose their problems directly in terms of the weak forms of
the partial differential equations arising from the theory, it allows them to focus on
higher-level modelling questions and not be hindered by specific implementation
issues. As preparatory steps for implementing a common, robust computational
tool kit for the growth problem, several relevant improvements to core FEniCS com-
ponents are currently actively being worked upon, including automated symbolic
linearisation of classes of nonlinear forms, improved support for finite deformation
and fluid-structure interaction, and adaptive mesh refinement/enrichment toward
(goal-oriented) error control.

These enhancements will better help the creation of a common computational
infrastructure customised for modelling growth. Since it is an open source project,
anyone is free to obtain, use, study and extend the code. This will allow researchers
and students to both contribute their own expertise, as well as learn from others,
enhancing common understanding of the problem.
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Such a computational framework would furnish a powerful tool that can easily
be tailored to answer specific questions ranging from those pertinent to viscoelastic
aspects of the mechanical response of growing tendons under different loading
conditions, to quantitative investigations of the efficacy of drugs based on how
they are administered, to understanding the cellular processes associated with
tumour growth.
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Configurational forces: are they needed?

Paolo Podio-Guidugli

(joint work with Frederic Francois Dechamps)

Attention for foundational issues is and has always been for the few, especially so
in times like those we live, when the “how?” sells much better than the “why?”. I
myself have always kept alive my basic-training habit of asking the latter question.

For one thing, it seems to me that many of the present-day users of configu-
rational mechanics – in as disparate fields as plant morphology, solid/solid phase
transitions, defect dynamics, structure optimization, growth and remodeling of
animal tissues, etc. etc. – have forgotten (given that they ever knew) that the
citizenship in the realm of mechanics of configurational forces consistent with their
balances has been strongly questioned by many until a few years ago. Therefore,
I have chosen to resume an argument I concocted long ago (and published only
more recently [1]), an argument that makes evident that, in the absence of con-
figurational forces, the physically reasonable assumption that tangential surface
accretion (≡ tangential mass addition at a body’s periphery) should require no
contact working leads to untenable consequences.

There was no time to touch on some related representation issues for both con-
tact and distance configurational forces, dealt with in [1]; the interested reader may
also wish to take a quick look at [2], where I show that, even within a variational
framework with its intrinsic limitations in scope, configurational force systems do
capture certain physical circumstances that standard force systems do not directly
account for.
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Tumours as elasto-visco-plastic growing bodies

Luigi Preziosi

(joint work with Davide Ambrosi)

Most research on solid tumour growth historically focuses on the interplay between
the biochemical factors that promote or inhibit growth (e.g., nutrients and growth
factors), influence motility (e.g., chemoattractants), induce environmental changes
(e.g., tumour angiogenic factors and metalloproteinases). Mechanical effects have
been neglected for a long time, until recent experiments have shown that they play
a relevant role both at the onset of tumour growth through the process of contact
inhibition and along its development because of the importance of the mechanical
interactions with the surrounding tissues.

As most biological tissues, tumours can be modeled as a mixture of many com-
ponents that can be grouped in three main categories: cells, extracellular matrix,
and liquid.

In the framework of mixture theory the basic mathematical model can then be
written as a set of mass balance equations and force balance equations with inertia
neglected. Actually, also the contributions due to the presence of the extracellular
liquid can be neglected, so that the basic system writes as

∂φα

∂t
+ ∇ · (φαvα) = Γα , α ∈ C ∪ {m}

∇ · (φαTα) +
∑

β 6=α,m

mαβ + mαm = 0 , α ∈ C

∇ · (φmTm) −
∑

α6=m

mαm = 0

where φα and vα are the volume ratio and the velocitiy of the α-th constituent,
respectively. C is the set of cell indices taken into consideration and m refers to
the ECM. The equations above requires the identification of the growth term Γα,
of the constitutive equation for the stress tensors Tα, and of the interaction forces
mαβ.

A possible strategy to identify these relations is to consider experiments on
adhesion at a cellular level. Cells adhere each other via cadherin junctions and to
the extra-cellular matrix via integrin junctions. Some experiments performed to
measure the strength of the adhesive bonds of different types of cells [2, 3, 8] show
the existence of a characteristic strength of a bond, that is, if an ensemble of cells
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is subject to a sufficiently high tension, locally some bonds break and some others
form.

From these experiments it can be inferred that in principle any cell-cell or
cell-ECM interaction is characterized by a threshold of the strength of the mi-
croscopic interaction force that can be sustained by the constituents considered
in the interaction. Above this threshold detachment and relative motion between
the constituents occur.

In particular, the mechanism of cell attachment–detachment becomes relevant
during growth under an external load, when duplicating cells are able to displace
their neighbours only if the energy needed is available.

Of course, one of the key issue is to upscale the cell-scale measurements above
to macroscopic constitutive equations. Following the idea proposed in [1, 6, 7],
we introduce for any constituent α a multiplicative decomposition and consider
the deformation gradient as split in the contributions due to pure growth Gα, to
plastic cell reorganization Fα

p and and to elastic deformation Fα
n, i.e.,

Fα = Fα
nFα

pGα.

This splitting is suggested also by the observation that growth occurs on a time
scale much longer (hours up to days) than deformation.

In fact, the deformation gradient indicates how the body is deforming locally
going from the initial (reference) configuration Kα

0 to the current configuration
Kα

t . An imaginary intermediate configuration Kα
n is then introduced assuming

that a point of the body can relieve its state of stress while relaxing the continuity
requirement, i.e. the integrity of the body. It then locally relaxes to a stress-free
configuration. The atlas of these pointwise configurations forms what we define
natural configuration with respect to Kα

t . Since it will change with time due to
growth and cell re-arrangement, it is also called evolving natural configuration.
One can then again consider the map from K0 to Kn as composed of two parts:
the first one related to growth/death processes (therefore to mass variations in
the volume element), the second one due to internal reorganisation, which implies
re-arranging of the adhesion links among the cells, without change of mass in the
volume element.

The role of the constitutive models is then to identify how the contributions
due to growth and plastic reorganization evolve in time and how to describe the
elastic component of the stress constitutive equation.

The constitutive equation for the stress takes a very convenient form in the
limit case of small deformation with respect to the evolving natural configuration,
that is typically true in the growth of tumour cell aggregates, because for larger
stress, the natural configuration evolves, due to cell reorganization. One can then
write

λαṪ′
α +

[
1 −

τα

f(T′
α)

]

+

T′
α = 2ηα

(
Dα −

1

3
trDα I

)
,
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where Dα is the rate of strain tensor, [·]+ stands for the positive part of the
argument, λα is called cell re-arrangement time, and τα is a yield stress. The
function f is a frame invariant measure of the stress.

We observe that the term containing the yield stress plays the role of a stress
relaxation term that switches on just when the stress is above the yield value.
Otherwise, for f̃(T′

α) < τα, it gives back the constitutive equation for an elastic
solid.

As in classical viscoelasticity, λα identifies the characteristic time needed to
relax the stress to the yield value (not the null one, as in Maxwell fluids). It is
then easy to realise that for processes with characteristic times much larger than
λα and stresses much larger than τα (i.e., f̃ ≫ τα) the model behaves like the
viscous models commonly used in the literature on cancer modeling.

In transient phenomena for times much larger than the cell re-arrangement time
the natural configuration has evolved relaxing the stress, leaving the material in a
state of stress living at most on the yield surface.

It can be proved that this constitutive model is able to describe both the ex-
periments by Forgacz and coworkers [4, 8], who perform a uniaxial test on a cell
aggregate, and by Verdier and coworkers [5], who perform a shear test on a dense
suspension of cells.

Following a similar reasoning for etherotypic cellular interaction and for cell-
ECM interaction we propose the following model for the interaction forces

λαβṁαβ +

(
1 −

σαβ

|mαβ|

)

+

mαβ = Mαβ(vβ − vα) ,

where the Mαβ ’s depend in turn nonlinearly on the volume ratios.
If λαβ = 0 the model extends the one proposed in [7] for cell-ECM interactions

also to all the heterotypic cellular interactions. In particular, the model states that
if |mαβ| < σαβ then the interaction is not strong enough and the two constituents
remain attached. Conversely, if |mαβ| ≥ σαβ they detach.

Notice that the model above allows a configuration without relative motion
(vα 6= vβ) with non vanishing mαβ with |mαβ | < σαβ . This means, for instance,
that the tissue can be at rest but have a moderate residual stress among the
constituents.

In order to better understand the meaning of the first term in the equation for
malphaβ , consider again the case |mαβ | < σαβ , so that the term with the positive
part of the parenthesis drops. In this case, even at rest a residual interaction
force acts between the constituents due to the different natural configurations
they would like to tend to.

Focusing on the interaction between cell and ECM, modeling it as

σαm =
σ̂αmφαm

m∗ − m
, with m∗ < 1 ,

implies that cells can not pass through regions where the ECM is denser than m∗.
The presence of such terms in modelling tumour growth is fundamental because it
allows to consider the case of cell compartimentalization by ECM barriers or basal
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membranes, and therefore to better describe the process of tumour encapsulation,
membrane remodelling and rupture due to the joint action of mechanical cues and
metalloproteases.
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Patterns and numbers on growing shells

Patrick Shipman

(joint work with Alan C. Newell, Régis Chirat)

Patterns of ridges or spots are ubiquitous in nature, arising as sand ripples,
fingerprints, geological and cloud formations, and in the camoflougue of tigers
and leopards. In recent work, we have studied patterns that arise from growth
in plants [4, 6, 7, 8, 9] and mollusks [1]. In plants, the arrangement of structures
such as leaves, bracts on a pine cone, or florets of composite flowers is referred
to as phyllotaxis (phyllo from the Greek word for leaf and taxis from the Greek
word for arrangement). It has long been observed that phyllotactic patterns can be
classified into just a few types and that the arrangement of phylla arising on plants
as different as sunflowers (in which case the phylla are the florets and underlying
bracts that make up a sunflower head) and many cacti (in which case the phylla
are the aeroles that support spines) are identical. In the sunflower pattern, phylla
are arranged in families of spirals that meet at the center of the plant; for a
typical plant, the numbers of spirals in each family lie in the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, . . . . In another pattern, observed commonly on columnar cacti,
phylla are arranged along undulating ridges that radiate out from the center of
the plant. In extreme cases, this pattern becomes one of true ridges, so that like
those in sand ripples or fingerprints, the plant surface can be described locally as



2254 Oberwolfach Report 39/2008

a periodic function. A similar competition between ridges and undulating ridges
appears in mollusk shells.

What physical or chemical mechanisms are behind the formation of these pat-
terns? and why is it that only a few patterns, in many ways similar to those
observed elsewhere in nature and in laboratory experiments, dominate in both
plants and mollusks?

Let’s begin with phyllotaxis. Underlying the genesis of phyllotactic patterns
is a rich interaction of biophysical and chemical mechanisms whose respective
roles are only beginning to be understood. On the one hand, Paul Green and
colleagues in the 1990s correlated the regions of compressive stress on a plant shoot
to regions where the phyllotactic patterns are formed and demonstrated through
experiments that mechanical forces influence pattern choice. On the other hand,
experimental work in the past five years has revealed how an instability involving
the diffusion and transport against diffusion of the growth hormone auxin plays
a central role in plant development. Auxin essentially acts to promote growth, so
that a nonhomogeneous distribution of auxin results in nonhomogeneous growth.
We have developed a model for the interaction between mechanics and auxin
within the framework of the Föppl-von Kármán-Donnell (FvKD) shell equations.
The plant is thought of as a thin shell (the plant’s outer skin, its tunica) on
an elastic foundation (the plant’s squishy corpus). Differential growth, partially
due to nonhomogeneous auxin concentration, gives rise to stresses in the tunica,
which may then buckle. In our most recent model [8], the elastic energy that is
minimized by this buckling is a functional E(w, F, g) of the shell deformation w,
a potential F for the in-plane stress tensor, and a growth function g related to
auxin concentration. The variations of E with respect to w and F yield the FvKD
equations

(1) wt + ∇4w + P∇2w − [F, w] + κw + γw3 = 0,

(2) ∇4F + ∇2g +
1

2
[w, w] = 0,

which are then completed by an equation (derived as a continuum approximation
of a discrete model proposed by Jönnson,et. al. [5]) governing the auxin concen-
tration distribution. In (1,2), the bracket is defined by [F, w] = Fxxwyy +Fyywxx−
2Fxywxy (where subscripts denote derivatives).

The key observation in analyzing these equations is that the energy is minimized
on configurations for which, written in polar coordinates,

(3) w(r, θ) =
∑

Aν(r) cos(~kν(r) · (r, θ)) =
∑

Aν(r) cos(lν(r)r + mνθ),

consists of triads of periodic deformations, meaning that the wavevectors ~kν =

(lν , mν) form a Fibonacci-like sequence with ~kν + ~kν+1 = ~kν+2. Note that the
angular wavenumbers mν are integers and lie in the Fibonacci sequence. The
analysis relies on reducing the problem to solving differential equations for the

order parameters, namely the wavevectors ~kj and amplitudes Aν , which parame-
terize the space of possible patterns. For a fixed value of r, the order parameter
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equations for the amplitudes Aν read

(4)
∂Aν

∂t
= σ(~kν)Aν +

∑
τ(~kν , ~kp, ~kq)A

∗
pA

∗
q + quartic terms,

where the cubic term is summed over all triads of wavevectors such that ±~kp±~kq =
~kν . In form, this system of equations is generic in that it governs bifurcations from
rotationally symmetric states to states with say, D4 (squares) or D6 (hexagons)
symmetry. The details of the microscopic mechanisms lie in the coefficients σ, τ ,

and these coefficients determine the optimal choice of wavevector sequence ~kν .
Depending on r, solutions with D4 or D6 symmetry may be preferred, or neither
symmetry may be compatible with the boundary conditions. However, a con-
tinuous symmetry can be expressed in the existence of functions A and L such
that

Aν(r) ≃ A

(
r

mν

)
, lν(r) ≃ L

(
r

mν

)
.

The functions A and L can be calculated from the PDE model by numerically
solving the amplitude equations (4), in which case the exact forms of A and L
depend on the coefficients σ and τ . In [9], we further show how functions A and
L can be derived starting not with a PDE model, but rather by making reference
to a global invariance condition which demands that the lattice determined by the

wavevectors ~kν vary as little as possible with r. In particular, the sequence lν is

related to the sequence mν by lν+1

lν
= limν→∞

mν

mν+1
. Classical theorems on the

continued fraction expansions and the approximation of irrational numbers, such

as lν+1

lν
, by rational numbers, such as mν

mν+1
, come into play.

The situation with mollusks is somewhat similar. In [1] we describe how dif-
ferential growth in the mantle that excretes the material that hardens into the
mollusk shell can give rise to patterns of ridges, undulating ridges, or lattices of
bumps. But, in contrast to plant patterns (which form in a disk), mollusk pat-
terns form at edges of growing shells and result from an interaction between soft
surface growth (the growing mantle) and hard surface growth (the shell that is
being excreted). The kinematics of shell formation has been modeled by Skalak
and Hoger [10], but we suggest that various three-dimensional deformations of the
basic shell shapes result from the interaction with the growing mantle.

Martine Ben Amar and colleagues [2] have studied other problems of growing
shells using the Föppl-von Kármán equations, and the Oberwolfach workshop pro-
vided an opportunity to think more about the structure of these equations and
the consequences of growth in two-dimensional bodies. What questions concern-
ing growth in general are suggested by these examples? One question involves
the interaction of energy-minimizing gradient systems (such as the FvKD equa-
tions) and chemical systems which are often not gradient. Indeed, our continuum
approximation of the discrete auxin-based model of Jönnson, et. al. [5] reveals
that this model is not gradient. It is no surprise, therefore, that simulations with
this model do not generally result in stable patterns. It is not to be expected
that chemical systems are gradient, but since the patterns observed in plants
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are so regular, one wonders if a chemical-based patterning mechanism could be
stabilized upon feedback with a biophysical mechanism. Another question is mo-
tivated by a calculation in [3], where we show how the buckling pattern resulting
from a nonuniform stress state in a plate can be modified by the presence of soft
modes. These are modes which are neutral (in that their linear growth rate is
0 at the buckling threshold) but which, through nonlinear interactions with the
active (positive linear growth rate) modes, can become players in determining the
energy-minimizing state. Might soft modes play a role in some growing shells,
where spatially nonunifrom stress states are to be expected?
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polarized transport model for phyllotaxis , PNAS 103 (2006), 1633-1638.
[6] P. D. Shipman, A. C. Newell, Phyllotactic patterns on plants, Phys. Rev. Lett., 92 (2004),

168102.
[7] P. D. Shipman, A. C. Newell, Polygonal planforms and phyllotaxis on plants, J. Theoretical

Biology, 236 (2005), 154-197.
[8] A. C. Newell, P. D. Shipman, Z. Sun, Phyllotaxis: Cooperation and competition between

mechanical and biochemical processes, J. Theoretical Biology 251 (2008), 421-439.
[9] P. Shipman, Continuous and discrete invariance in phyllotactic patterns, in preparation

(2008).
[10] R. Skalak, A. Hoger, Kinematics of surface growth, J. Mathematical Biology 35 (1997),

869-907.

Mathematical modeling and simulation of rotational tissue cultures

Angela Stevens

(joint work with Raymond Chan, Juan J.L. Velázquez)

Rotational tissue cultures are relevant for high throughput drug testing systems in
regenerative medicine. A petri dish, which contains growth medium and dispersed
embryonic cells, is located on a gyratory shaker. The specificities of the rotation
affect the fluid flow in the petri dish and thus the motion of the cells. Without any
movement of the petri dish, the cells generally form a mono-layer at the bottom
and grow in a disorganized manner. However, under a specific rotation of the petri
dish, the cells finally form several 3-dimensional spheroids. Details about these
experimental methods can be found in [1] and [2].

To understand the role the fluid dynamics play in this reaggregation and struc-
ture forming process, an experimental model system was set up. Microscopic beads
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were put into the culture dish and rotated under the same conditions as the cel-
lular systems. This experiment is assumed to serve well as a model system for
the cell-based fluid dynamics under consideration. Clustering of beads could be
observed only for certain rotation speeds. For other speeds further interesting pat-
terns and phase transitions occurred. To confirm the hypothesis that mechanical
aggregation plays a key role in the initial clustering of the beads, a mathematical
model for the fluid dynamics was derived and numerically analyzed. The basis
are the incompressible Navier-Stokes Equations with fictitious body forces added,
resulting from the rotation of the petri dish. A dimensional analysis was per-
formed and the model was reduced to a shallow water type of problem by regular
perturbation techniques. The main assumption is, that the Reynolds number in
horizontal direction is much larger than in vertical direction. The qualitative be-
havior of the mathematical model compares well to the aggregation behavior of
the beads observed in the experiment. Further details about the mathematical
model, its simulation and visualization are given in [3]
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