
Int. J. Computational Science and Engineering, Vol. 4, No. 4, 2009 283

Efficient representation of computational meshes

A. Logg

Center for Biomedical Computing,
Simula Research Laboratory,
Department of Informatics,
University of Oslo,
P.O. Box 134 1325 Lysaker, Norway
E-mail: logg@simula.no

Abstract: We present a simple yet general and efficient approach to representation
of computational meshes. Meshes are represented as sets of mesh entities of different
topological dimensions and their incidence relations. We discuss a straightforward and
efficient storage scheme for such mesh representations and efficient algorithms for
computation of arbitrary incidence relations from a given initial and minimal set of
incidence relations. It is elaborated on how the proposed concepts and data structures may
be used for assembly of variational forms in parallel over distributed meshes. Benchmarks
are presented to demonstrate the efficiency of the proposed data structure.

Keywords: mesh; mesh representation; mesh algorithms; mesh entity; parallel assembly.

Reference to this paper should be made as follows: Logg, A. (2009) ‘Efficient representation
of computational meshes’, Int. J. Computational Science and Engineering, Vol. 4, No. 4,
pp.283–295.

Biographical notes: Anders Logg works as a Research Scientist at the Center for Biomedical
Computing at Simula Research Laboratory and holds a part-time position as Associate
Professor at the Department of Informatics at the University of Oslo. His research concerns
automated computing in general, and in particular automated discretisation, adaptivity and
error control for differential equations. He is one of the main developers of the FEniCS
project and has contributed to DOLFIN, FFC and UFC.

1 Introduction

The computational mesh is a central component of
any software framework for the (mesh-based) solution
of partial differential equations. To reduce run-time
and enable the solution of large problems, it is
therefore important that the computational mesh may
be represented efficiently, both in terms of the speed of
operations on the mesh or access of mesh data, and in
terms of the memory usage for storing any given mesh in
memory.

It is furthermore important that the data structure
for the representation of the mesh is general enough to
harbour a wide range of computational meshes. This
generality must also be reflected in the programming
interface to the mesh representation, to allow
the implementation of general algorithms on the
computational mesh. Many algorithms, such as the
assembly of a linear system from a finite element
variational problem, may be implemented similarly for
simplicial, quadrilateral and hexahedral meshes if the
programming interface to the mesh representation does
not enforce a specific interface limited to a specific

mesh type. For example, if the entities on the boundary
of a mesh (the facets) may be accessed in a similar
way independently of the mesh dimension and not
as edges in two space dimensions and faces in three
space dimensions, one may use the same code to apply
boundary conditions in 2D and 3D.

In Knepley and Karpeev (2007), a very general
and flexible representation of computational meshes is
presented. The mesh is represented as a sieve, which
is in general a directed acyclic graph with the mesh
entities as points and directed edges describing how
the mesh entities are connected. In this paper, we take
a slightly less general approach but build on some
of the concepts from Knepley and Karpeev (2007).
In particular, we will represent the mesh as a set of
mesh entities (corresponding to the points of the sieve)
and their incidence relations. We also acknowledge the
works (Berti, 2002, 2006), where similar concepts are
defined and where the importance of mesh iterators for
expressing generic algorithms on computational meshes
is advocated.

The data structures and algorithms discussed in
this paper have been implemented as a C++ library

Copyright © 2009 Inderscience Enterprises Ltd.

284 A. Logg

and is distributed as part of DOLFIN, see Logg and
Wells (2009). DOLFIN is a problem-solving environment
for ordinary and partial differential equations and
is developed as part of the FEniCS project for the
automation of computational mathematical modelling,
see FEniCS (2008) and Dupont et al. (2003). Interfaces
to DOLFIN are available in the form of a C++ and a
Python class library.

1.1 Design goals

When designing the mesh library, we had the following
design goals in mind for the mesh representation
and its interface. The mesh representation should be
simple, meaning that the data is represented in terms
of basic C++ arrays unsigned int* and double*;
it should be generic, meaning that it should not be
specialised to say simplicial meshes in one, two and three
space dimensions; and it should be efficient, meaning
that operations on the mesh or access of mesh data
should be fast and the storage should require minimal
memory usage for any given mesh. Furthermore, the
programming interface to the mesh representation should
be intuitive, meaning that suitable abstractions (classes)
should be available, including specialised interfaces for
specific types of meshes as well as generic interfaces
that enable dimension-independent programming; and it
should be efficient, meaning that the overhead of the
object-oriented interface should be minimised.

1.2 Outline

In the following section, we present the basic concepts
that define the mesh representation and its interface.
We then discuss the data structures of the C++
implementation of the mesh representation in DOLFIN,
followed by a discussion of the algorithms used in
DOLFIN to compute any given incidence relation
from a given minimal set of incidence relations. Next,
we demonstrate the programming interface to the mesh
library. This is followed by a discussion of distributed
(parallel) mesh data structures. Finally, we present a
series of benchmarks to demonstrate the efficiency of the
mesh representation and its implementation followed by
some concluding remarks.

2 Concepts

The mesh representation is based on the following basic
concepts: mesh, mesh topology, mesh geometry, mesh
entity and mesh connectivity. Each of these concepts is
mapped directly to the corresponding component (class)
of the implementation.

A mesh is defined by its topology and its geometry.
The mesh topology defines how the mesh is composed
of its parts (the mesh entities) and the mesh geometry
describes how the mesh is embedded in some metric

space, typically R
n for n = 1, 2, 3. A mesh topology

(Figure 1) may be specified as a set of mesh entities
(the vertices, edges etc.) and their connectivity (incidence
relations). Different embeddings (geometries) may be
imposed on any given mesh topology to create different
meshes, e.g., when moving the vertices of a mesh in
an ALE computation. Below, we discuss the two basic
concepts mesh entity and mesh connectivity in some
detail and also introduce the concept mesh function.

Figure 1 A mesh topology is a set of mesh entities
(vertices, edges, etc.) and their connectivity
(incidence relations), that is, which entities are
connected (incident) to which entities

2.1 Mesh entities

A mesh entity is a pair (d, i), where d is the topological
dimension of the mesh entity and where i is a
unique index for the mesh entity within its topological
dimension, ranging from 0 to Nd − 1 with Nd the
number of entities of topological dimension d. We let D
denote the maximal topological dimension over the mesh
entities and set the topological dimension of the mesh
equal to D. This is illustrated in Figure 2, where each
mesh entity is labelled by its topological dimension and
index (d, i).

Figure 2 Each mesh entity of a mesh is identified with a pair
(d, i), where d is the topological dimension of the
mesh entity and where i is a unique index for the
mesh entity within its topological dimension,
ranging from 0 to Nd − 1 with Nd the number of
entities of topological dimension d (see online
version for colours)

Efficient representation of computational meshes 285

For convenience, we also name common entities of
low topological dimension or codimension. We refer to
entities of topological dimension 0 as vertices, entities of
dimension 1 as edges, entities of dimension 2 as faces,
entities of codimension 1 (dimension D − 1) as facets
and entities of codimension 0 (dimension D) as cells.
Thus, for a triangular mesh, the edges are also facets and
the faces are also cells, and for a tetrahedral mesh, the
faces are also facets. This is summarised in Table 1.

Table 1 Named entities of low topological dimension
or codimension

Entity Dimension Codimension

Vertex 0 D
Edge 1 D − 1
Face 2 D − 2
Facet D − 1 1
Cell D 0

2.2 Mesh connectivity

We refer to the set of incidence relations on a set of
mesh entities as the connectivity of the mesh. For a mesh
of topological dimension D, there are (D + 1)2 different
classes of incidence relations (connectivities) to consider.
Each such class is denoted here by d → d′ for 0 ≤ d,
d′ ≤ D. For any given mesh entity (d, i), its connectivity
(d → d′)i is given by the set of incident mesh entities of
dimension d′.

Thus, for a triangular mesh (of topological dimension
D = 2), there are nine different incidence relations of
interest between the entities of the mesh. These are in
turn 0 → 0 (the vertices incident to each vertex), 0 → 1
(the edges incident to each vertex), . . . , D → D (the cells
incident to each cell).

For d > d′, the definition of incidence is evident.
Mesh entity (d′, i′) is incident to mesh entity (d, i) if
(d′, i′) is contained in (d, i). Thus, the three vertices of
a triangular cell form the set of incident vertices and the
three edges form the set of incident edges. For d < d′,
we define mesh entity (d′, i′) as incident to mesh entity
(d, i) if (d, i) is incident to (d′, i′). It thus remains to
define incidence for d = d′. For d, d′ > 0, we say that
mesh entity (d′, i′) is incident to mesh entity (d, i) if both
are incident to a common vertex, that is, a mesh entity of
dimension zero, while for d = d′ = 0, we say that (d′, i′)
is incident to (d, i) if both are incident to a common cell,
that is, a mesh entity of dimension D.

Together, the set of mesh entities and the connectivity
(incidence relations) define the topology of the mesh.
Note that the complete set of incidence relations d → d′

for 0 ≤ d, d′ ≤ D may be determined from the single
class of incidence relations D → 0, that is, the vertices
of each cell in the mesh. We return to this below when
we present an algorithm for computing any given class
of incidence relations from the minimal set of incidence
relations D → 0.

2.3 Mesh functions

We define a mesh function as a discrete function
that takes a value on the set of mesh entities of a
given fixed dimension 0 ≤ d ≤ D. Mesh functions are
simple objects but very useful. A real-valued mesh
function may for example be used to describe material
parameters on the cells of a mesh. A boolean-valued
mesh function may be used to set markers on cells
or edges for adaptive refinement. Integer-valued mesh
functions may be used to express inter-connectivity
between two separate meshes. A typical use is when
a boundary mesh is extracted from a given mesh
(by identifying the set of facets that are incident to
exactly one cell). One may then use a mesh function
to describe the mapping from the cells in the extracted
boundary mesh (which has topological dimension D − 1)
to the corresponding facets in the original mesh (which
has topological dimension D). Note that mesh functions
are discrete and are not meant to represent for example a
piecewise polynomial finite element function on the mesh.

3 Data structures

The mesh representation as described in the previous
section has been implemented as a small C++ class library
and is available freely as part of the DOLFIN C++ finite
element library, version 0.6.3 or higher. Each of the basic
concepts mesh, mesh topology, mesh geometry, mesh
entity, mesh connectivity and mesh function is realised
by the corresponding class Mesh, MeshTopology,
MeshGeometry, MeshEntity, MeshConnectivity
and MeshFunction. All basic data structures are stored
as static arrays of unsigned integers (unsigned int*)
or floating point values (double*), which minimises the
cost of storing the mesh data and allows for quick access
of mesh data. We discuss each of these classes/data
structures in detail below.

3.1 The class Mesh

The class Mesh stores a MeshTopology and a
MeshGeometry that together define the mesh. The
MeshTopology and MeshGeometry are independent
of each other and of the Mesh. Although it is possible
to work with the MeshTopology and MeshGeometry
separately, they are most conveniently accessed through
a Mesh class that holds a pair of a matching topology
and geometry.

3.2 The class MeshTopology

The class MeshTopology stores the topology of a
mesh as a set of mesh entities and connectivities.
For each pair of topological dimensions (d, d′),
0 ≤ d, d′ ≤ D, the class MeshTopology stores a
MeshConnectivity representing the set of incidence

286 A. Logg

relations d → d′. The mesh entities themselves need
not be stored explicitly; they are stored implicitly for
each topological dimension d as the set of pairs (d, i)
for 0 ≤ i < Nd, where Nd is the number of mesh
entities of topological dimension d. Thus, for each
topological dimension, the class MeshTopology stores
an (unsigned) integer Nd, from which the set of mesh
entities {(d, 0), (d, 1), . . . , (d, Nd − 1)} may be generated.

3.3 The class MeshGeometry

The class MeshGeometry stores the geometry of a mesh.
Currently, only the simplest possible representation has
been implemented, where only the coordinates of each
vertex are stored. These coordinates are stored in a
contiguous array coordinates of size nN0, where n
is the geometric dimension and N0 is the number of
vertices.

3.4 The class MeshEntity

The class MeshEntity provides a view of a given mesh
entity (d, i). The mesh entities themselves are not stored,
but a MeshEntity may be generated from a given
pair (d, i). The class MeshEntity provides a convenient
interface for accessing mesh data, in particular in
combination with the concept of mesh iterators, as will
be discussed in more detail below. Thus, one may for any
given MeshEntity access its topological dimension d,
its index i and its set of incidence relations (connected
mesh entities) of any given topological dimension d′.
Specialised interfaces are provided for the named mesh
entities of Table 1 in the form of the following sub
classes of MeshEntity: Vertex, Edge, Face, Facet
and Cell.

3.5 The class MeshConnectivity

The class MeshConnectivity stores the set of
incidence relations d → d′ for a fixed pair of topological
dimensions (d, d′). The set of incidence relations is
stored as a contiguous unsigned int array indices
of entity indices for dimension d′ entities, together
with an auxiliary unsigned int array offsets that
specifies the offset into the first array for each entity
of dimension d.1 The size of the first array indices
is equal to the total number of incident entities of
dimension d′ and the size of the second array offsets
is equal to the total number of entities of dimension d
plus one.

As an example, consider the storage of the set of
incidence relations 2 → 0, that is the vertices of each cell,
for the triangular mesh in Figure 3. The mesh has two
entities of dimension d = 2 and four entities of dimension
d′ = 0. Furthermore, each entity of dimension d = 2 is
incident to three entities of dimension d′ = 0. The array
entities is then given by [0, 1, 3, 1, 2, 3] and
the array offsets is given by [0, 3, 6].

Figure 3 The mesh connectivity 2 → 0 (the vertices of each
cell) for this triangular mesh with two cells and
four vertices is stored as two arrays indices =
[0, 1, 3, 1, 2, 3] and offsets = [0, 3, 6]
(see online version for colours)

3.6 The class MeshFunction

The class MeshFunction stores a single array of
Nd values on the mesh entities of a given fixed
dimension d, and is templated over the value type.
Typical uses include MeshFunction<double> for
material parameters that take a constant value on
each cell of a mesh, MeshFunction<bool> for cell
markers that indicate cells that should be refined, and
MeshFunction<unsigned int> to store inter-mesh
connectivity or sub domain markers.

3.7 Minimal storage

The mesh data structures described above are
summarised in Table 2. We note that the classes Mesh
and MeshTopology function as ‘aggregate classes’
that collect mesh data stored elsewhere, and that no
data is stored in the class MeshEntity. All data is
thus stored in the class MeshConnectivity (in the
two arrays indices and offsets) and in the class
MeshGeometry (in the array coordinates). Note
that one MeshConnectivity object is stored for each
pair of topological dimensions (d, d′) for which the mesh
connectivity has been initialised.

As an illustration, consider the storage of a
tetrahedral mesh with N0 vertices and N3 cells
(tetrahedra) embedded in R

3 where we only store the set
of incidence relations D → 0. Each cell has four vertices,
so the class MeshConnectivity stores 4N3 + N3 +
1 ∼ 5N3 values of type unsigned int. Furthermore,
the class MeshGeometry stores 3N0 values of type
double. Thus, if an unsigned int is four bytes and
a double is eight bytes, then the total size of the
mesh is 20N3 + 24N0 bytes. For a standard uniform
tetrahedral mesh of the unit square, the number of cells
is approximately six times the number of vertices, so the
total size of the mesh is

(20N3 + 24N0) b = (20N3 + 24N3/6) b = 24N3 b. (1)

Efficient representation of computational meshes 287

Table 2 Summary of mesh data structures

Data structure Principal data

Mesh MeshTopology topology
MeshGeometry geometry

MeshTopology MeshConnectivity**
connectivities

MeshGeometry double* coordinates

MeshEntity –

MeshConnectivity unsigned int* indices
unsigned int* offsets

Principal data Size

MeshTopology topology –
MeshGeometry geometry –

MeshConnectivity** connectivities –

double* coordinates nN0

unsigned int* indices O(Nd)
unsigned int* offsets Nd + 1

Thus, a mesh with 1,000,000 cells may be stored in
just 24 MB. Note that if additional mesh connectivity is
computed, like the edges or facets of the tetrahedra, more
memory will be required to store the mesh.

4 Algorithms

In this section, we present the algorithms used by the
DOLFIN mesh library to compute the mesh connectivity
d → d′ for any given 0 ≤ d, d′ ≤ D. We assume that
we are given an initial set of incidence relations D → 0,
that is, we know the vertices of each cell in the mesh.

The key to computing the mesh connectivities of a
mesh is to compute the connectivities in a particular
order. For example, if the vertices are known for each
edge in the mesh (1 → 0), then it is straightforward to
compute the edges incident to each vertex (0 → 1) as will
be explained below. The computation is based on three
algorithms that are used successively in a particular order
to compute the desired connectivity. As a consequence,
the computation of a certain connectivity d → d′

might require the computation of one or more other
connectivities. We describe these algorithms in detail
below. An overview is given in Figure 4.

4.1 Build

Algorithm 1 (Build) computes the connectivities D → d
and d → 0 from D → 0 and D → D for 0 < d < D. In
other words, given the vertices and incident cells of each
cell in the mesh, Algorithm 1 computes the entities of
dimension d of each cell and for each such entity the
vertices of that entity. Thus, if d = 1, then the edges of
each cell and the vertices of each edge are computed.

Figure 4 The three basic algorithms for computing
connectivity. From the top: Build (computing
connectivity D → d and d → 0 from D → 0 and
D → D), Transpose (computing connectivity
d → d′ from d′ → d) and Intersection (computing
connectivity d → d′ from d → d′′ and d′′ → d′)
(see online version for colours)

The notation of Algorithm 1 requires some explanation.
As before, we let (d → d′)i denote the set of entities of
dimension d′ incident to entity (d, i):

(d → d′)i = {(d′, j) : (d′, j) incident to (d, i)}. (2)

Algorithm 1 also uses the operation

d
local(D,i)−−−−−−→ 0, (3)

which denotes the set of vertex sets incident to the mesh
entities of topological dimension d of a given cell (D, i).
To make this concrete, consider a triangular mesh (for

which D = 2) and take d = 1. If Vi = d
local(D,i)−−−−−−→ 0, then

Vi denotes the set of vertex sets incident to the edges of
triangle number i. The set Vi consists of three sets of
vertices (one for each edge) and each set vi ∈ Vi contains
two vertices. In addition, Algorithm 1 uses the operation

index((D, j), d, vi), (4)

which denotes the index of the entity of dimension d in
the cell (D, j) which is incident to the vertices vi.

288 A. Logg

We may now summarise Algorithm 1 as follows.
For each cell (D, i), we create a set of candidate entities
of dimension d, represented by their incident vertices
in the set Vi. This operation is local on each cell and
must be performed differently for each different type of
mesh. We then iterate over each cell incident to the cell
(D, i) and check for each candidate entity vi ∈ Vi if it
has already been created by any of the previously visited
cells, making sure that two incident cells agree on the
index of any common incident entity.

4.2 Transpose

Algorithm 2 (Transpose) computes the connectivity
d → d′ from the connectivity d′ → d for d < d′. For
each entity of dimension d′, we iterate over the
incident entities of dimension d and add the entities
of dimension d′ as incident entities to the entities of
dimension d. We may thus compute for example the
incident cells of each vertex (the cells to which the vertex
belongs) by iterating over the cells of the mesh and for
each cell over its incident vertices.

4.3 Intersection

Algorithm 3 (Intersection) computes the connectivity
d → d′ from d → d′′ and d′′ → d′ for d ≥ d′. For each
entity (d, i) of dimension d, we iterate over each incident
entity (d′′, k) of dimension d′′ and for each such entity we
iterate over each incident entity (d′, j) of dimension d′.
We then check if either (d, i) and (d′, j) are entities of
the same topological dimension or if (d′, j) is completely
contained in (d, i) by checking that each vertex incident
to (d′, j) is also incident to (d, i), in which case (d′, j′) is
added as an incident entity of entity (d, i).

Here, d′′ must be chosen according to the definition of
incidence given above. For example, we may take d′′ = 0
to compute the connectivity D → D (the incident cells of
each cell) by iterating over the vertices of each cell and
for each such vertex iterate over the incident cells.

4.4 Successive application of build, transpose
and intersection

Any given connectivity d → d′ for 0 ≤ d, d′ ≤ D may be
computed by a successive application of Algorithms 1–3
in a suitable order. In Algorithm 4, we present the basic
logic for a successive and recursive application of the
three basic algorithms Build, Transpose and Intersection
to compute any given connectivity.

We illustrate this in Figure 5 for computation of the
connectivity 2 → 2, the incident faces of each face,
for a tetrahedral mesh. From the given connectivity
D → 0, we first compute the connectivity 0 → D
by an application of Transpose. This allows us to
compute D → D by an application of Intersection.
The connectivity 2 → 0 (and D → 2) may then be
computed by an application of Build. We then apply
Transpose to compute 0 → 2 and finally Intersection to
compute 2 → 2.

Figure 5 Computing connectivity 2 → 2 (the faces incident to
any given face) by successive application of
Transpose, Intersection, Build, Transpose and
Intersection (see online version for colours)

Efficient representation of computational meshes 289

4.5 Memory handling

For each of Algorithms 1–3, memory usage may be
conserved by running each algorithm twice; first one
round to count the number of incident entities, which
allows the static data structures discussed above to be
preallocated, and then another round to set the values
of the incident entities. Furthermore, memory usage may
be conserved by clearing incidence relations that get
computed as byproducts of Algorithms 1–3 when they
are no longer needed.

5 Interfaces

In this section, we briefly describe the user interface of
the DOLFIN mesh library. We only describe the C++
interface, but note that an (almost) identical Python
interface is also available.

5.1 Creating a mesh

A mesh may be created in one of three ways, as
illustrated in Figure 6. Either, the mesh is defined by
a data file in the DOLFIN XML format,2 or the mesh
is defined vertex by vertex and cell by cell using the
DOLFIN mesh editor, or the mesh is defined as one of
the DOLFIN built-in meshes. Currently provided built-in
meshes include triangular meshes of the unit square and
tetrahedral meshes of the unit cube.

Figure 6 A DOLFIN mesh may be defined either by an
XML data file, or explicitly using the DOLFIN
mesh editor, or as a built-in predefined mesh.
The last two arguments in the call to
MeshEditor::open() specify the topological
and geometric dimensions of the mesh respectively
(see online version for colours)

5.2 Mesh iterators

Mesh data may be accessed directly from the mesh, but
is most conveniently accessed through the mesh iterator
interface. Algorithms operating on a mesh (including
Algorithms 1–3) may often be expressed in terms of
iterators. Mesh iterators can be used to iterate either

over the global set of mesh entities of a given topological
dimension, or over the locally incident entities of
any given mesh entity. Two alternative interfaces are
provided; the general interface MeshEntityIterator
for iteration over entities of some given topological
dimension d, and the specialised mesh iterators
VertexIterator, EdgeIterator, FaceIterator,
FacetIterator and CellIterator for iteration
over named entities. Iteration over mesh entities may
be nested at arbitrary depth and the connectivity
(incidence relations) required for any given iteration is
automatically computed (at the first occurrence) by the
algorithms presented in the previous section.

A MeshEntityIterator (it) may be dereferenced
(*it) to create a MeshEntity, and any member
function MeshEntity::foo() may be accessed by
it->foo(). A MeshEntityIterator may thus be
thought of as a pointer to a MeshEntity. Similarly,
the named mesh entity iterators may be dereferenced
to create the corresponding named mesh entities. Thus,
dereferencing a VertexIterator gives a Vertex
which provides an interface to access vertex data.
For example, if it is a VertexIterator, then
it->point() returns the coordinates of the vertex.

The use of mesh iterators is demonstrated in Figure 7
for iteration over all cells in the mesh and for each cell
all its vertices as illustrated in Figure 8. For each cell
and each vertex, we print its mesh entity index. We also
demonstrate the use of named mesh entity iterators to
print the coordinates of each vertex.

Figure 7 Iteration over all vertices of all cells in a mesh,
using the general iterator interface
MeshEntityIterator and the specialised
iterators CellIterator and VertexIterator
(see online version for colours)

5.3 Direct access to mesh data

In addition to the iterator interface, all mesh data may
be accessed directly. Thus, one may obtain an array of
the vertices of all cells in the mesh directly from the mesh
topology, and one may obtain the vertex coordinates of
the mesh directly from the mesh geometry. This illustrated

290 A. Logg

in Figure 9 where the same iteration as in Figure 7 is
performed without mesh iterators.

Figure 8 Iteration over all vertices of all cells in a mesh.
The order of iteration is decided by the definition
of the mesh, or alternatively, the UFC ordering
convention Alnæs et al. (2007a) if the mesh is
ordered. Meshes may be ordered by a call to
Mesh::order() (see online version for colours)

Figure 9 Iteration over all vertices of all cells in a mesh and
direct access of mesh data corresponding to the
iteration of Figures 7 and 8 (see online version
for colours)

5.4 Mesh algorithms

In addition to the computation of mesh connectivity as
discussed previously, the DOLFIN mesh library provides
a number of other useful mesh algorithms, including
boundary extraction, uniform mesh refinement, adaptive
mesh refinement (in preparation), mesh smoothing, and
reordering of mesh entities.

Figure 10 demonstrates uniform refinement and
boundary mesh extraction. When extracting a boundary
mesh, it may be desirable to also generate a mapping
from the entities of the boundary mesh to the
corresponding entities of the original mesh. This is the
case for example when assembling the contribution from
boundary integrals during assembly of a linear system
arising from a finite element variational formulation of a
PDE. One then needs to map each cell of the boundary
mesh to the corresponding facet of the original mesh.
(Note that the cells of the boundary mesh are facets of
the original mesh.) In Figure 11, we demonstrate how
to extract a boundary and generate the mapping from

the boundary mesh to the original mesh. The mapping is
expressed as two MeshFunctions, one from the vertices
of the boundary mesh to the corresponding vertex indices
of the original mesh and one from the cells of the
boundary mesh to the corresponding facet indices of the
original mesh.

Figure 10 Uniform refinement, boundary extraction and
uniform refinement of the boundary mesh using
the DOLFIN mesh library. Note that the extracted
boundary mesh is itself a mesh and may thus for
example be refined (see online version for colours)

Figure 11 Extraction of a boundary mesh and generation of
a pair of mappings from the vertices of the
boundary mesh to the indices of the corresponding
vertices of the original mesh and from the cells of
the boundary mesh to the indices of the
corresponding facets of the original mesh
(see online version for colours)

6 Parallel considerations

We discuss here how the concepts and data structures
discussed above can be used to assemble a global sparse
finite element operator (typically matrix) over a mesh
distributed over several processors. It is demonstrated
below that we may reuse the concepts introduced above
to distribute the mesh. In particular, each processor owns
a separate piece of the global mesh, which can be stored
as a regular Mesh. Furthermore, each processor knows
which facets of the local mesh are incident with which
facets on other processors and this information can be
stored as a pair of MeshFunctions.

6.1 Simple distribution of mesh data

Let a mesh T be given and assume that the mesh
has been partitioned into n disjoint meshes {T }n−1

i=0
that together cover the computational domain Ω ⊂ R

n.
Such a partition can be computed using for example
SCOTCH, see Pellegrini (2004), or Metis, see Karypis
and Kumar (1998a, 1998b). On each processor pi,
i = 0, 2, . . . , n − 1, we store its part of the global mesh
as a regular mesh and in addition two mesh functions Si

and Fi over the facets of Ti.

Efficient representation of computational meshes 291

We thus propose to store a distributed mesh T on
a set of processors as the set of tuples {(Ti,Si,Fi)}n−1

i=0
where one tuple (Ti,Si,Fi) is stored on each processor
pi for i = 0, 1, . . . , n − 1.

The mesh function Si maps each facet f to
an integer j = Si(f) which indicates which (other)
subdomain/mesh Tj that the facet f is (physically)
incident with,

Si : (D − 1, [0, 1, . . . , N i
D−1 − 1]) → [0, 1, . . . , n − 1]. (5)

Here, (D − 1, [0, 1, . . . , N i
D−1 − 1]) indicates that the

domain of Si is the set of tuples {(D − 1, k)} where 0 ≤
k ≤ N i

D−1 − 1 and N i
D−1 is the number of facets of Ti.

Thus, if j = Si(f) for some j �= i, then the facet f is
shared with the mesh Tj . If the facet f is only incident
with Ti itself, then we set Si(f) = i.

The mesh function Fi maps each facet entity f
to an integer Fi(f) which indicates which facet f ′ =
(D − 1,Fi(f)) of Tj for j = Si(f) that the facet f is
incident (identical) to. If Si(f) = i, then f is not shared
with another mesh and we set Fi(f) = 0. We illustrate
the meaning of the two mesh functions Si and Fi in
Figure 12.

Figure 12 A global mesh T partitioned into n = 3 meshes
{Ti}n−1

i=0 . The mesh functions Si and Fi

indicate which facets of Ti are shared with
other meshes. In this example, we have
S0((1, 3)) = S0((1, 4)) = 1, indicating that
facets (1, 3) and (1, 4) in T0 are shared with T1.
Furthermore, we may evaluate F0 at these two
facets to find that the facet (1, 3) in T0 is incident
to facet (1, 4) = F0((1, 3)) in T1 and facet (1, 4)
in T0 is incident to facet (1, 5) = F0((1, 4)) in T1

(see online version for colours)

6.2 Parallel assembly

The standard algorithm for computing a global sparse
operator (tensor) from a finite element variational form is
known as assembly, see Zienkiewicz et al. (1967), Hughes
(1987), and Langtangen (1999). By this algorithm, the
global sparse operator may be computed by assembling
(summing) the contributions from the local entities of
a finite element mesh. On each cell of the mesh, one
computes a small cell tensor (often referred to as the
“element stiffness matrix”) and add the entries of that
tensor to a global sparse tensor (often referred to as
the “global stiffness matrix”). We shall not discuss the
assembly algorithm in detail here and refer instead to

Alnæs et al. (2008), Logg (2007), and Alnæs et al.
(2007b), but note that to add the entries from the
local cell tensor to the global sparse tensor, we need
to compute a so-called local-to-global mapping on each
cell. This maps the local degrees of freedom on a cell
(numbering the rows and columns of the cell tensor)
to global degrees of freedom (numbering the rows and
columns of the global tensor).

The assembly algorithm may be trivially parallelised
by letting each processor pi compute and insert the cell
tensors on the local mesh Ti into the global tensor.
When the global tensor is a sparse matrix, linear algebra
libraries like PETSc, see Balay et al. (1997, 2004),
may be used to store the global tensor in parallel. PETSc
handles the communication of matrix data between
processors and we need only make sure that each
processor knows how to insert entries into the global
sparse matrix according to the local-to-global mapping
of the global mesh. We demonstrate below that on
each processor pi, we may (with a small amount of
communication with neighbouring processors) compute
the part of the local-to-global mapping of the global
mesh T relevant to each local mesh Ti in parallel on each
processor pi, which thus allows us to assemble the global
sparse matrix in parallel.

6.3 Mapping degrees of freedom in parallel

In Algorithm 5, we describe how the mapping of degrees
of freedom may be computed on a distributed mesh
{(Ti,Si,Fi)}n−1

i=0 .
To express this algorithm in compact form, we need

to introduce some further notation. For each cell c
in a local finite element mesh Ti, we assume that we
can compute a local-to-global mapping ιic, which maps
each local degree of freedom on the cell c to a global
degree of freedom (for a numbering scheme valid on
the local mesh Ti). For example, when computing with
standard piecewise linear finite elements on triangles,
the local-to-global mapping ιic may map a local vertex
number 0, 1 or 2 on c to the corresponding global
number vertex number on the mesh Ti. Thus, the domain
of ιic is here {0, 1, 2} and the range is [0, N i

0 − 1],
where N i

0 is the number of vertices of the mesh Ti.
We emphasise that the local-to-global mapping ιic is not
aware of the global mesh T of which the local mesh Ti is
a part. Instead, it is the task of Algorithm 5 to compute
(in parallel) a local-to-global mapping valid on the global
mesh T from a given local-to-global mapping on each
local mesh Ti.

We let Mi denote the parallel local-to-global
mapping to be computed on each part Ti of the global
mesh. For ease of notation, we express Mi as a set of
tuples Mi = {((c, i), I)}, where c is a cell (number), i
is the local number of a degree of freedom on c and I
is the corresponding global number. The mapping Mi

should be thought of as a function that maps a cell
and a local degree of freedom (c, i) to the corresponding
global degree of freedom I . In the case of standard
piecewise linear elements on triangles, the domain of Mi

292 A. Logg

is [0, N i
D − 1] × {0, 1, 2}, where N i

D is the number of cells
of the mesh Ti, and the range of Mi is [0, N0 − 1], where
N0 is the total number of vertices of the partitioned
global mesh T . We note here that the mapping Mi may
be stored as a fixed-size array.

To compute the parallel local-to-global mapping Mi on
each processor, we need to iterate over the entities of the
mesh Ti and renumber the degrees of freedom. To do
this, we introduce an auxiliary temporary mapping Ni

on each processor that maps degrees of freedom as
given by the local-to-global mapping ιic on each cell c
(which is only aware of how to map degrees of freedom
internally on Ti) to degrees of freedom as given by
the parallel local-to-global mapping Mi (which is aware
of how to map degrees of freedom globally on the
distributed mesh). In the case of standard piecewise linear
elements on triangles, the domain of Ni is [0, N i

0 − 1] and
the range of Ni is [0, N0 − 1]. Just as for Mi, we may
think of Ni as a function but write it as a set of tuples
(pairs) in Algorithm 5 for ease of notation. In a C++
implementation, Ni may be stored in the form of an STL
map (std::map<unsigned int, unsigned int>).

Finally, we let N i denote the number of degrees of
freedom on Ti not shared with a mesh Tj for j < i.

This number can be computed on each mesh Ti from the
mesh function Si.

In Algorithm 5, we first let each processor pi compute
N i (in parallel). These numbers are then communicated
successively from pi−1 to pi to compute an offset for
the numbering of degrees of freedom on each mesh Ti.
We then let each processor pi number the degrees of
freedom (in parallel) on cells which are incident with
the boundary of Ti and are shared with a mesh Tj for
j > i. After the degrees of freedom on mesh boundaries
have been numbered on each processor, those numbering
schemes are communicated successively from pi to pj for
all i < j such that Ti and Tj share degrees of freedom on
a common facet. Finally, each processor pi may number
the N i “internal degrees of freedom” on Ti.

The key point of this algorithm is to always let
pi number degrees of freedom common with pj for
i < j. This numbering of shared degrees of freedom is
then communicated over shared facets, from f ′ to f in
stage 2 of Algorithm 5. Since it is known a priori which
facets are shared between two meshes Ti and Tj , one
may communicate the common numbering for all shared
degrees of freedom from pi to pj in one batch.

Note that it is important that the communication of
shared degrees of freedom in stage 2 of Algorithm 5
is performed sequentially, starting with processor p1
receiving the common numbering from p0, then p2
receiving the common numbering from p0 and/or p1 etc.
This guarantees that common degrees of freedom are
communicated from pi to all pj with i < j such that
Ti and Tj share common degrees of freedom, even if
Ti and Tj do not share a common facet. For this to
work, we make the assumption that if any two meshes
Ti and Tj share a common degree of freedom on the two
cells c ∈ Ti and c′ ∈ Tj , then each of Ti and Tj must share
that degree of freedom with some other mesh Ti′ or Tj′

respectively. In Figure 13, we illustrate this assumption
(for i′ = j′) and give an example of a partition for which
Algorithm 5 fails to correctly number all shared degrees
of freedom. It is a mild assumption to disallow such
partitions (and meshes).

Figure 13 Two partitions of a mesh. In the partition on the
left, two of the meshes share only a common
vertex and may thus share a single degree of
freedom at that vertex. The communication of a
common numbering of that degree of freedom is
propagated over the facets incident with the
common vertex to the neighbouring mesh. In the
partition on the right, it is not possible to
propagate the numbering over facets (since there
are no shared facets) and so Algorithm 5 will fail
to compute a correct numbering scheme for this
partition (see online version for colours)

Efficient representation of computational meshes 293

Algorithm 5 is currently not implemented in DOLFIN.
Instead, a simple (but suboptimal) strategy where the
computational mesh is broadcast to all processors
has been implemented. Each processor owns a copy
of the entire mesh and knows which part of that
mesh to assemble. For a further discussion of the
current implementation of parallel assembly in DOLFIN
(available with DOLFIN 0.7.2), see Vikstrøm (2008).

7 Benchmark results

In this section, we present a series of benchmarks to
illustrate the efficiency of the mesh representation and
its implementation. The new mesh library (which is
available as part of DOLFIN since version 0.6.3) is
compared to the old DOLFIN mesh library which
is a fairly efficient C++ implementation, but which
suffers from object-oriented overhead; all mesh entities
are there stored as arrays of objects, which store their
data locally in each object (including mesh incidence
relations and vertex coordinates). The benchmark results
were obtained on a 2.66 GHz 64-bit Intel processor
(Q6700) running Ubuntu GNU/Linux for DOLFIN
version 0.6.2-1 and DOLFIN version 0.7.1 respectively.

The five test cases that are examined are the
following:

• CPU time for creation of a uniform tetrahedral
mesh of the unit cube (Figure 14)

• memory usage for creation of a uniform tetrahedral
mesh of the unit cube (Figure 15)

• CPU time for iteration over all vertices of the mesh
(Figure 16)

• CPU time for accessing the coordinates of all
vertices of the mesh (Figure 17)

• uniform refinement of the mesh (Figure 18).

Figure 14 Benchmarking the CPU time for creation of a
uniform tetrahedral mesh of the unit cube for the
new mesh library vs. the old DOLFIN mesh
library (see online version for colours)

In summary, the speedup was in all cases a factor
10–1000 and memory usage was reduced by a factor
of 50 (comparing slopes of lines in Figure 15). The
speedup and decreased memory usage is the result of
more efficient algorithms and data structures, where
all data is stored in large static arrays and objects
are only provided as part of the interface for simple
access to the underlying data representation, not to
store data themselves. Another contributing factor is
that the old DOLFIN mesh library precomputes certain
connectivities (including the edges and faces of each cell)
at startup, whereas this computation is carried out only
when requested in the new DOLFIN mesh library, either
as part of the iterator interface or by an explicit call to
Mesh::init(). We also note that from Figure 15, it is
evident that DOLFIN can be further improved in terms
of its minimal memory footprint.

Figure 15 Benchmarking the memory usage for creation
of a uniform tetrahedral mesh of the unit cube for
the new mesh library vs. the old DOLFIN mesh
library (see online version for colours)

Figure 16 Benchmarking the CPU time for iteration over the
vertices of each cell for the new mesh library vs.
the old DOLFIN mesh library (see online version
for colours)

294 A. Logg

Figure 17 Benchmarking the CPU time for iteration over the
coordinates of each vertex for the new mesh
library vs. the old mesh library vs. direct access of
coordinate arrays in the new DOLFIN mesh
library (see online version for colours)

Figure 18 Benchmarking the CPU time for uniform
refinement of the unit cube for the new mesh
library vs. the old DOLFIN mesh library
(see online version for colours)

8 Conclusions

We have presented a simple yet general and
efficient representation of computational meshes and
demonstrated a straightforward implementation of this
representation as a set of C++ classes that correspond
to the basic concepts of the mesh representation. The
implementation is available freely as part of DOLFIN
(Logg and Wells, 2009).

Acknowledgements

The author wishes to acknowledge the many
contributions to the DOLFIN mesh library from the
DOLFIN developers, in particular Garth N. Wells,
Johan Hoffman, Johan Jansson, Kristian Oelgaard,

Ola Skavhaug and Gustav Magnus Vikstrøm. The author
also wishes to acknowledge invaluable input from and
inspiring discussions with the authors of Knepley and
Karpeev (2007).

This research is supported by an Outstanding Young
Investigator grant from the Research Council of Norway,
NFR 180450.

References

Alnæs, M.S., Langtangen, H.P., Logg, A., Mardal, K-A.
and Skavhaug, O. (2007a) UFC, URL: http://www.fenics.
org/ufc/

Alnæs, M.S., Langtangen, H.P., Logg, A., Mardal, K-A.
and Skavhaug, O. (2007b) UFC Specification and User
Manual, URL: http://www.fenics.org/ufc/

Alnæs, M.S., Langtangen, H.P., Logg, A., Mardal, K-A.
and Skavhaug, O. (2008) ‘Unified framework for finite
element assembly’, Submitted to International Journal of
Computational Science and Engineering.

Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F. (1997)
‘Efficient management of parallelism in object oriented
numerical software libraries’, in Arge, E., Bruaset, A.M.
and Langtangen, H.P. (Eds.): Modern Software Tools in
Scientific Computing, Birkhäuser Press, pp.163–202.

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D.,
Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F.
and Zhang, H. (2004) PETSc Users Manual, Tech.
Rep. ANL-95/11 – Revision 2.1.5, Argonne National
Laboratory.

Berti, G. (2002) ‘Generic programming for mesh algorithms:
towards universally usable geometric components’,
Proceedings of the Fifth World Congress on
Computational Mechanics, July, Vienna University of
Technology.

Berti, G. (2006) ‘GrAL – the grid algorithms library’, Future
Generation Computer Systems, p.22.

Dupont, T., Hoffman, J., Johnson, C., Kirby, R.C.,
Larson, M.G., Logg, A. and Scott, L.R. (2003) The
FEniCS Project, Tech. Rep. 2003–21, Chalmers Finite
Element Center Preprint Series.

FEniCS (2008) FEniCS Project, URL: http://www.fenics.org/

Hughes, T.J.R. (1987) The Finite Element Method:
Linear Static and Dynamic Finite Element Analysis,
Prentice-Hall, Englewood Cliffs, NJ.

Karypis, G. and Kumar, V. (1998a) ‘A fast and high quality
multilevel scheme for partitioning irregular graphs’,
SIAM J. Sci. Comput., Vol. 20, pp.359–392.

Karypis, G. and Kumar, V. (1998b) MeTis: Unstructured
Graph Partitioning and Sparse Matrix Ordering System,
Version 4.0.

Knepley, M.G. and Karpeev, D.A. (2007) Mesh Algorithms for
PDE with Sieve I: Mesh Distribution, Technical Report
ANL/MCS-P1455-0907, Argonne National Laboratory,
February, Submitted to Scientific Programming.

Langtangen, H.P. (1999) ‘Computational partial differential
equations – numerical methods and Diffpack
programming’, Lecture Notes in Computational Science
and Engineering, Springer, Berlin.

Efficient representation of computational meshes 295

Logg, A. (2007) ‘Automating the finite element method’,
Arch. Comput. Methods Eng., Vol. 14, pp.93–138.

Logg, A. and Wells, G.N. (2009) ‘DOLFIN: automated finite
element computing’, Submitted to ACM Transactions on
Mathematical Software.

Pellegrini, F. (2004) ‘Native mesh ordering with SCOTCH 4.0’,
Proceedings of VECPAR’04, June, Valencia, Spain,
soumis.

Vikstrøm, G.M. (2008) Parallelization Strategies for DOLFIN,
MSc Thesis, Department of Informatics, University
of Oslo.

Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (1967) The Finite
Element Method – Its Basis and Fundamentals, 6th ed.,
Elsevier, 2005, first published in 1967.

Notes

1The storage is similar to the standard Compressed Row
Storage (CRS) format for sparse matrices, except that only
the column indices need to be stored, not the values. Also
note that the two arrays indices and offsets are private
data structures of the class MeshConnectivity. The user
is presented with a more intuitive interface, as will be
demonstrated below.

2A conversion script dolfin-convert is provided for
conversion from other popular mesh formats (including
Gmsh and Medit) to DOLFIN XML format.

