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Differential equations are solved routinely by large computer programs, but the solution process is rarely automated. Each
equation requires a different program and each such program requires a considerable amount of work to develop and maintain.

The FEniCS project provides a set of tools that automate important aspects of the solution process, ultimately aiming at a
complete automation of computational mathematical modeling, including the automation of discretization, discrete solution,
error control, modeling and optimization. A key component of FEniCS is the FEniCS Form Compiler (FFC), which automates
the discretization of differential equations by taking as input a variational problem in mathematical notation and generating
highly efficient optimized low-level code for the evaluation of the corresponding discrete operator.

1 Introduction

The finite element method provides a general framework for solving differential equations and thus, by automating the finite
element method, one may automate the solution of differential equations. However, a complete automation of the finite
element remains an outstanding challenge. A further challenge is to design and implement such an automating system so
that it becomes both general and efficient. The FEniCS project [1] solves this problem by code generation. Automated code
generation allows a system to be both general and specific (and thereby efficient) since code may be generated specifically for
any given input (differential equation).

2 Finite element code generation

In writing software for solving differential equations by the finite element method, one may identify common tasks that
may be implemented as reusable components. Such components may be data structures and algorithms for computational
meshes, linear algebra and plotting. However, other components must be implemented specifically for each specific differential
equation. In particular, this is true for the computation of the discrete operator (stiffness matrix) arising from the finite element
discretization of a differential operator. Thus, one may implement a finite element program for solving a particular differential
equation by combining reusable components from a library with special purpose code. Writing the special purpose code for
computing the discrete operator is often time consuming and prone to errors. However, as demonstrated in [2–5], the special
purpose code may be generated automatically from a high-level description of the differential operator. Thus, by combining
reusable components for algorithms on computational meshes and linear algebra with automated code generation for the
computation of the discrete operator, one may build an automated system for the solution of differential equations. These
concepts are illustrated in Figure 1.

Fig. 1 Finite element code generation. A specialized program is generated for a subset of the input (the differential equation). The solution
is then computed by running the generated program for the remaining input (mesh, coefficients and other parameters).

The FEniCS project is organized as a collection of interoperable components for automated solution of differential equa-
tions. Some of these components provide reusable libraries for mesh data structures and algorithms. Other components, like
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the form compilers FFC and SyFi provide tools for finite element code generation. A form compiler accepts as input a finite
element variational form and generates as output efficient low-level code for assembly of the corresponding discrete operator.
Recently, we have developed a specification for a fixed interface adhered to by the generated code. The interface is named
UFC (Unified Form-assembly Code) and is described in detail in [6]. A fixed and documented interface makes it possible to
use the code generated by the form compilers FFC and SyFi in other projects (that support the UFC specification). Similarly,
one may hook up UFC code generated by other form compilers or hand-written UFC code to FEniCS. With the output from
form compilers fixed, we plan to turn our attention to the specification of a common input language for form compilers (UFL,
Unified Form Language).

On top of the collection of low-level library components and code generation tools discussed above, the FEniCS project
provides a common high-level interface to these components (DOLFIN). The interface is available both as a C++ library and
as a Python module. Recently, support has been added to DOLFIN for just-in-time compilation of variational forms, meaning
that finite element variational forms may be specified and evaluated from within a Python script; code is generated at run-time
(by a form compiler) and compiled (by a C++ compiler).

3 Generality and efficiency

By code generation, one may obtain a system that is both general and efficient. FEniCS currently supports code generation for
arbitrary order continuous and discontinuous Lagrange elements (standard piecewise polynomials), Brezzi–Douglas–Marini
elements, Raviart–Thomas elements, Nedelec elements, Crouzeix–Raviart elements and arbitrary mixed elements. We don’t
claim that the code generation is optimal or close to optimal for all combinations of finite elements and variational forms.
However, in [4], speedups of several orders of magnitude are demonstrated for a set of standard test cases. In [4], we also
discuss the limitations and shortcomings of our current code generation approach.

4 Examples

As an example, we consider here the implementation of a solver for Poisson’s equation, −∆u = f . We consider the following
standard variational problem: Find u ∈ Vh such that a(v, u) = L(v) for all v ∈ Vh, where a(v, u) =

∫
Ω
∇v · ∇u dx,

L(v) =
∫
Ω

vf dx and Vh is the space of piecewise linear functions. We list the Python implementation below. For brevity, we
have left out the definition of the right-hand side f and the boundary condition.

from dolfin import *

mesh = UnitSquare(32, 32)
element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)
u = TrialFunction(element)
a = dot(grad(v), grad(u))*dx
L = v*f*dx

pde = LinearPDE(a, L, mesh, bc)
u = pde.solve()
plot(u)
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