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Abstract The finite element method can be viewed as a ma-
chine that automates the discretization of differential equa-
tions, taking as input a variational problem, a finite element
and a mesh, and producing as output a system of discrete
equations. However, the generality of the framework pro-
vided by the finite element method is seldom reflected in im-
plementations (realizations), which are often specialized and
can handle only a small set of variational problems and finite
elements (but are typically parametrized over the choice of
mesh).

This paper reviews ongoing research in the direction of a
complete automation of the finite element method. In partic-
ular, this work discusses algorithms for the efficient and au-
tomatic computation of a system of discrete equations from
a given variational problem, finite element and mesh. It is
demonstrated that by automatically generating and compil-
ing efficient low-level code, it is possible to parametrize a
finite element code over variational problem and finite ele-
ment in addition to the mesh.

Abbreviations
A The differential operator of the model A(u) = f

A The global tensor with entries {Ai}i∈I
A0 The reference tensor with entries {A0

iα}i∈IK,α∈A
Ā0 The matrix representation of the (flattened)

reference tensor A0

AK The element tensor with entries {AK
i }i∈IK

a The semilinear, multilinear or bilinear form
aK The local contribution to a multilinear form a

from K
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aK The vector representation of the (flattened)
element tensor AK

A The set of secondary indices
B The set of auxiliary indices
e The error, e = U − u

FK The mapping from K0 to K

GK The geometry tensor with entries {Gα
K }α∈A

gK The vector representation of the (flattened)
geometry tensor GK

I The set
∏r

j=1[1,Nj ] of indices for the global
tensor A

IK The set
∏r

j=1[1, n
j
K ] of indices for the element

tensor AK (primary indices)
ιK The local-to-global mapping from NK to N
ι̂K The local-to-global mapping from N̂K to N̂
ι
j
K The local-to-global mapping from N j

K to N j

K A cell in the mesh T
K0 The reference cell
L The linear form (functional) on V̂ or V̂h

m The number of discrete function spaces used in the
definition of a

N The dimension of V̂h and Vh

Nj The dimension V
j
h

Nq The number of quadrature points on a cell
n0 The dimension of P0

nK The dimension of PK

n̂K The dimension of P̂K

n
j
K The dimension of Pj

K

N The set of global nodes on Vh

N̂ The set of global nodes on V̂h

N j The set of global nodes on V
j
h

N0 The set of local nodes on P0

NK The set of local nodes on PK

N̂K The set of local nodes on P̂K



94 A. Logg

N j
K The set of local nodes on Pj

K

ν0
i A node on P0

νK
i A node on PK

ν̂K
i A node on P̂K

ν
K,j
i A node on Pj

K

P0 The function space on K0 for Vh

P̂0 The function space on K0 for V̂h

Pj

0 The function space on K0 for V
j
h

PK The local function space on K for Vh

P̂K The local function space on K for V̂h

Pj
K The local function space on K for V

j
h

Pq(K) The space of polynomials of degree ≤ q on K

PK The local function space on K generated by
{Pj

K}mj=1
R The residual, R(U) = A(U) − f

r The arity of the multilinear form a (the rank of A

and AK )
U The discrete approximate solution, U ≈ u

(Ui) The vector of expansion coefficients for
U = ∑N

i=1 Uiφi

u The exact solution of the given model A(u) = f

V The space of trial functions on � (the trial space)
V̂ The space of test functions on � (the test space)
Vh The space of discrete trial functions on � (the

discrete trial space)
V̂h The space of discrete test functions on � (the

discrete test space)
V

j
h A discrete function space on �

|V | The dimension of a vector space V

�i A basis function in P0

�̂i A basis function in P̂0

�
j
i A basis function in Pj

0
φi A basis function in Vh

φ̂i A basis function in V̂h

φ
j
i A basis function in V

j
h

φK
i A basis function in PK

φ̂K
i A basis function in P̂K

φ
K,j
i A basis function in Pj

K

ϕ The dual solution
T The mesh
� A bounded domain in R

d

1 Introduction

The finite element method (Galerkin’s method) has emerged
as a universal method for the solution of differential equa-
tions. Much of the success of the finite element method can
be contributed to its generality and simplicity, allowing a
wide range of differential equations from all areas of science
to be analyzed and solved within a common framework. An-
other contributing factor to the success of the finite element

method is the flexibility of formulation, allowing the prop-
erties of the discretization to be controlled by the choice of
finite element (approximating spaces).

At the same time, the generality and flexibility of the fi-
nite element method has for a long time prevented its au-
tomation, since any computer code attempting to automate
it must necessarily be parametrized over the choice of varia-
tional problem and finite element, which is difficult. Conse-
quently, much of the work must still be done by hand, which
is both tedious and error-prone, and results in long develop-
ment times for simulation codes.

Automating systems for the solution of differential equa-
tions are often met with skepticism, since it is believed that
the generality and flexibility of such tools cannot be com-
bined with the efficiency of competing specialized codes
that only need to handle one equation for a single choice
of finite element. However, as will be demonstrated in this
paper, by automatically generating and compiling low-level
code for any given equation and finite element, it is possible
to develop systems that realize the generality and flexibil-
ity of the finite element method, while competing with or
outperforming specialized and hand-optimized codes.

1.1 Automating the Finite Element Method

To automate the finite element method, we need to build a
machine that takes as input a discrete variational problem
posed on a pair of discrete function spaces defined by a set
of finite elements on a mesh, and generates as output a sys-
tem of discrete equations for the degrees of freedom of the
solution of the variational problem. In particular, given a dis-
crete variational problem of the form: Find U ∈ Vh such that

a(U ;v) = L(v) ∀v ∈ V̂h, (1)

where a : Vh × V̂h → R is a semilinear form which is lin-
ear in its second argument, L : V̂h → R a linear form and
(V̂h,Vh) a given pair of discrete function spaces (the test and
trial spaces), the machine should automatically generate the
discrete system

F(U) = 0, (2)

where F : Vh → R
N , N = |V̂h| = |Vh| and

Fi(U) = a(U ; φ̂i) − L(φ̂i), i = 1,2, . . . ,N, (3)

for {φ̂i}Ni=1 a given basis for V̂h.
Typically, the discrete variational problem (1) is obtained

as the discrete version of a corresponding continuous varia-
tional problem: Find u ∈ V such that

a(u;v) = L(v) ∀v ∈ V̂ , (4)

where V̂h ⊂ V̂ and Vh ⊂ V .
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The machine should also automatically generate the dis-
crete representation of the linearization of the given semilin-
ear form a, that is the matrix A ∈ R

N×N defined by

Aij (U) = a′(U ; φ̂i , φj ), i, j = 1,2, . . . ,N, (5)

where a′ : Vh × V̂h × Vh → R is the Fréchet derivative of a

with respect to its first argument and {φ̂i}Ni=1 and {φi}Ni=1 are

bases for V̂h and Vh respectively.
In the simplest case of a linear variational problem,

a(v,U) = L(v) ∀v ∈ V̂h, (6)

the machine should automatically generate the linear system

AU = b, (7)

where Aij = a(φ̂i , φj ) and bi = L(φ̂i), and where (Ui) ∈
R

N is the vector of degrees of freedom for the discrete solu-
tion U , that is, the expansion coefficients in the given basis
for Vh,

U =
N∑

i=1

Uiφi. (8)

We return to this in detail below and identify the key
steps towards a complete automation of the finite element
method, including algorithms and prototype implementa-
tions for each of the key steps.

1.2 The FEniCS Project and the Automation of CMM

The FEniCS project [34, 65] was initiated in 2003 with the
explicit goal of developing free software for the Automation
of Computational Mathematical Modeling (CMM), includ-
ing a complete automation of the finite element method. As
such, FEniCS serves as a prototype implementation of the
methods and principles put forward in this paper.

In [92], an agenda for the automation of CMM is out-
lined, including the automation of (i) discretization, (ii) dis-
crete solution, (iii) error control, (iv) modeling and (v) op-
timization. The automation of discretization amounts to the
automatic generation of the system of discrete equations (2)
or (7) from a given differential equation or variational prob-
lem. Choosing as the foundation for the automation of dis-
cretization the finite element method, the first step towards
the Automation of CMM is thus the automation of the finite
element method. We continue the discussion on the automa-
tion of CMM below in Sect. 11.

Since the initiation of the FEniCS project in 2003, much
progress has been made, especially concerning the automa-
tion of discretization. In particular, two central components
that automate central aspects of the finite element method
have been developed. The first of these components is FIAT,

the FInite element Automatic Tabulator [78–80], which au-
tomates the generation of finite element basis functions for
a large class of finite elements. The second component is
FFC, the FEniCS Form Compiler [81, 82, 94, 95], which
automates the evaluation of variational problems by auto-
matically generating low-level code for the assembly of the
system of discrete equations from given input in the form of
a variational problem and a (set of) finite element(s).

In addition to FIAT and FFC, the FEniCS project devel-
ops components that wrap the functionality of collections
of other FEniCS components (middleware) to provide sim-
ple, consistent and intuitive user interfaces for application
programmers. One such example is DOLFIN [61, 66, 67],
which provides both a C++ and a Python interface (through
SWIG [12, 13]) to the basic functionality of FEniCS.

We give more details below in Sect. 9 on FIAT, FFC,
DOLFIN and other FEniCS components, but list here some
of the key properties of the software components developed
as part of the FEniCS project, as well as the FEniCS system
as a whole:

• Automatic and efficient evaluation of variational prob-
lems through FFC [81, 82, 94, 95], including support for
arbitrary mixed formulations;

• Automatic and efficient assembly of systems of discrete
equations through DOLFIN [61, 66, 67];

• Support for general families of finite elements, including
continuous and discontinuous Lagrange finite elements of
arbitrary degree on simplices through FIAT [78–80];

• High-performance parallel linear algebra through PETSc
[6–8];

• Arbitrary order multi-adaptive mcG(q)/mdG(q) and
mono-adaptive cG(q)/dG(q) ODE solvers [47, 90, 91,
93, 96].

1.3 Automation and Mathematics Education

By automating mathematical concepts, that is, implement-
ing corresponding concepts in software, it is possible to raise
the level of the mathematics education. An aspect of this is
the possibility of allowing students to experiment with math-
ematical concepts and thereby obtaining an increased under-
standing (or familiarity) for the concepts. An illustrative ex-
ample is the concept of a vector in R

n, which many students
get to know very well through experimentation and exercises
in Octave [35] or MATLAB [115]. If asked which is the true
vector, the x on the blackboard or the x on the computer
screen, many students (and the author) would point towards
the computer.

By automating the finite element method, much like
linear algebra has been automated before, new advances
can be brought to the mathematics education. One exam-
ple of this is Puffin [62, 63], which is a minimal and edu-
cational implementation of the basic functionality of FEn-
iCS for Octave/MATLAB. Puffin has successfully been



96 A. Logg

used in a number of courses at Chalmers in Göteborg and
the Royal Institute of Technology in Stockholm, ranging
from introductory undergraduate courses to advanced un-
dergraduate/beginning graduate courses. Using Puffin, first-
year undergraduate students are able to design and imple-
ment solvers for coupled systems of convection–diffusion–
reaction equations, and thus obtaining important under-
standing of mathematical modeling, differential equations,
the finite element method and programming, without reduc-
ing the students to button-pushers.

Using the computer as an integrated part of the math-
ematics education constitutes a change of paradigm [64],
which will have profound influence on future mathematics
education.

1.4 Outline

This paper is organized as follows. In the next section, we
first present a survey of existing finite element software that
automate particular aspects of the finite element method. In
Sect. 3, we then give an introduction to the finite element
method with special emphasis on the process of generat-
ing the system of discrete equations from a given variational
problem, finite element(s) and mesh. A summary of the no-
tation can be found at the end of this paper.

Having thus set the stage for our main topic, we next
identify in Sects. 4–6 the key steps towards an automation
of the finite element method and present algorithms and sys-
tems that accomplish (in part) the automation of each of
these key steps. We also discuss a framework for generating
an optimized computation from these algorithms in Sect. 7.
In Sect. 8, we then highlight a number of important concepts
and techniques from software engineering that play an im-
portant role for the automation of the finite element method.

Prototype implementations of the algorithms are then dis-
cussed in Sect. 9, including benchmark results that demon-
strate the efficiency of the algorithms and their implemen-
tations. We then, in Sect. 10, present a number of examples
to illustrate the benefits of a system automating the finite el-
ement method. As an outlook towards further research, we
present in Sect. 11 an agenda for the development of an ex-
tended automating system for the Automation of CMM, for
which the automation of the finite element method plays a
central role. Finally, we summarize our findings in Sect. 12.

2 Survey of Current Finite Element Software

There exist today a number of projects that seek to create
systems that (in part) automate the finite element method. In
this section, we survey some of these projects. A complete
survey is difficult to make because of the large number of
such projects. The survey is instead limited to a small set

of projects that have attracted the attention of the author. In
effect, this means that most proprietary systems have been
excluded from this survey.

It is instructional to group the systems both by their level
of automation and their design. In particular, a number of
systems provide automated generation of the system of dis-
crete equations from a given variational problem, which we
in this paper refer to as the automation of the finite ele-
ment method or automatic assembly, while other systems
only provide the user with a basic toolkit for this purpose.
Grouping the systems by their design, we shall differentiate
between systems that provide their functionality in the form
of a library in an existing language and systems that im-
plement new domain-specific languages for finite element
computation. A summary for the surveyed systems is given
in Table 1.

It is also instructional to compare the basic specifica-
tion of a simple test problem such as Poisson’s equation,
−	u = f in some domain � ⊂ R

d , for the surveyed sys-
tems, or more precisely, the specification of the correspond-
ing discrete variational problem a(v,U) = L(v) for all v in
some suitable test space, with the bilinear form a given by

a(v,U) =
∫

�

∇v · ∇U dx, (9)

and the linear form L given by

L(v) =
∫

�

vf dx. (10)

Each of the surveyed systems allow the specification of
the variational problem for Poisson’s equation with varying
degree of automation. Some of the systems provide a high
level of automation and allow the variational problem to be
specified in a notation that is very close to the mathematical
notation used in (9) and (10), while others require more user-
intervention. In connection to the presentation of each of the
surveyed systems below, we include as an illustration the
specification of the variational problem for Poisson’s equa-
tion in the notation employed by the system in question. In
all cases, we include only the part of the code essential to
the specification of the variational problem. Since the differ-
ent systems are implemented in different languages, some-
times even providing new domain-specific languages, and
since there are differences in philosophies, basic concepts
and capabilities, it is difficult to make a uniform presenta-
tion. As a result, not all the examples specify exactly the
same problem.

2.1 Analysa

Analysa [4, 5] is a domain-specific language and problem-
solving environment (PSE) for partial differential equations.
Analysa is based on the functional language Scheme and
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Table 1 Summary of projects seeking to automate the finite element
method

Project Automatic assembly Library/Language License

Analysa Yes Language Proprietary

deal.II No Library QPL1

Diffpack No Library Proprietary

FEniCS Yes Both GPL, LGPL

FreeFEM Yes Language LGPL

GetDP Yes Language GPL

Sundance Yes Library LGPL

provides a language for the definition of variational prob-
lems. Analysa thus falls into the category of domain-specific
languages.

Analysa puts forward the idea that it is sometimes desir-
able to compute the action of a bilinear form, rather than
assembling the matrix representing the bilinear form in the
current basis. In the notation of [5], the action of a bilinear
form a : V̂h × Vh → R on a given discrete function U ∈ Vh

is

w = a(V̂h,U) ∈ R
N, (11)

where

wi = a(φ̂i ,U), i = 1,2, . . . ,N. (12)

Of course, we have w = AU , where A is the matrix repre-
senting the bilinear form, with Aij = a(φ̂i , φj ), and (Ui) ∈
R

N is the vector of expansion coefficients for U in the basis
of Vh. It follows that

w = a(V̂h,U) = a(V̂h,Vh)U. (13)

If the action only needs to be evaluated a few times for
different discrete functions U before updating a lineariza-
tion (reassembling the matrix A), it might be more efficient
to compute each action directly than first assembling the ma-
trix A and applying it to each U .

To specify the variational problem for Poisson’s equation
with Analysa, one specifies a pair of bilinear forms a and m,
where a represents the bilinear form a in (9) and m repre-
sents the bilinear form

m(v,U) =
∫

�

vU dx, (14)

corresponding to a mass matrix. In the language of Analysa,
the linear form L in (10) is represented as the application of

1In addition to the terms imposed by the QPL, the deal.II license im-
poses a form of advertising clause, requiring the citation of certain pub-
lications. See [11] for details.

Table 2 Specifying the variational problem for Poisson’s equation
with Analysa using piecewise linear elements on simplices (triangles
or tetrahedra)

(integral-forms
((a v U) (dot (gradient v) (gradient U)))
((m v U) (* v U))

)
(elements
(element (lagrange-simplex 1))

)
(spaces
(test-space (fe element (all mesh) r:))
(trial-space (fe element (all mesh) r:))

)
(functions
(f (interpolant test-space (...)))

)
(define A-matrix (a testspace trial-space))
(define b-vector (m testspace f))

the bilinear form m on the test space V̂h and the right-hand
side f ,

L(φ̂i) = m(V̂h, f )i, i = 1,2, . . . ,N, (15)

as shown in Table 2. Note that Analysa thus defers the cou-
pling of the forms and the test and trial spaces until the com-
putation of the system of discrete equations.

2.2 deal.II

deal.II [9–11] is a C++ library for finite element computa-
tion. While providing tools for finite elements, meshes and
linear algebra, deal.II does not provide support for automatic
assembly. Instead, a user needs to supply the complete code
for the assembly of the system (7), including the explicit
computation of the element stiffness matrix (see Sect. 3 be-
low) by quadrature, and the insertion of each element stiff-
ness matrix into the global matrix, as illustrated in Table 3.
This is a common design for many finite element libraries,
where the ambition is not to automate the finite element
method, but only to provide a set of basic tools.

2.3 Diffpack

Diffpack [22, 88] is a C++ library for finite element and fi-
nite difference solution of partial differential equations. Ini-
tiated in 1991, in a time when most finite element codes were
written in FORTRAN, Diffpack was one of the pioneering
libraries for scientific computing with C++. Although origi-
nally released as free software, Diffpack is now a proprietary
product.

Much like deal.II, Diffpack requires the user to supply the
code for the computation of the element stiffness matrix, but
automatically handles the loop over quadrature points and
the insertion of the element stiffness matrix into the global
matrix, as illustrated in Table 4.
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Table 3 Assembling the linear system (7) for Poisson’s equation with deal.II
...
for (dof_handler.begin_active(); cell! = dof_handler.end(); ++cell)
{
...
for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
cell_matrix(i, j) += (fe_values.shape_grad (i, q_point) *

fe_values.shape_grad (j, q_point) *
fe_values.JxW(q_point));

for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)

cell_rhs(i) += (fe_values.shape_value (i, q_point) *
<value of right-hand side f> *
fe_values.JxW(q_point));

cell->get_dof_indices(local_dof_indices);
for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
system_matrix.add(local_dof_indices[i],

local_dof_indices[j],
cell_matrix(i, j));

for (unsigned int i = 0; i < dofs_per_cell; ++i)
system_rhs(local_dof_indices[i]) += cell_rhs(i);

}
...

Table 4 Computing the
element stiffness matrix and
element load vector for
Poisson’s equation with
Diffpack

for (int i = 1; i <= nbf; i++)
for (int j = 1; j <= nbf; j++)
elmat.A(i, j) += (fe.dN(i, 1) * fe.dN(j, 1) +

fe.dN(i, 2) * fe.dN(j, 2) +
fe.dN(i, 3) * fe.dN(j, 3)) * detJxW;

for (int i = 1; i <= nbf; i++)
elmat.b(i) += fe.N(i)*<value of right-hand side f>*detJxW;

2.4 FEniCS

The FEniCS project [34, 65] is structured as a system of in-
teroperable components that automate central aspects of the
finite element method. One of these components is the form
compiler FFC [81, 82, 94, 95], which takes as input a vari-
ational problem together with a set of finite elements and
generates low-level code for the automatic computation of
the system of discrete equations. In this regard, the FEniCS
system implements a domain-specific language for finite el-
ement computation, since the form is entered in a special
language interpreted by the compiler. On the other hand, the
form compiler FFC is also available as a Python module and
can be used as a just-in-time (JIT) compiler, allowing vari-
ational problems to be specified and computed with from
within the Python scripting environment. The FEniCS sys-
tem thus falls into both categories of being a library and a
domain-specific language, depending on which interface is
used.

To specify the variational problem for Poisson’s equation
with FEniCS, one must specify a pair of basis functions v
and U, the right-hand side function f, and of course the bi-
linear form a and the linear form L, as shown in Table 5.

Table 5 Specifying the variational problem for Poisson’s equation
with FEniCS using piecewise linear elements on tetrahedra

element = FiniteElement("Lagrange",
"tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)
f = Function(element)

a = dot(grad(v), grad(U))*dx
L = v*f*dx

Note in Table 5 that the function spaces (finite elements)
for the test and trial functions v and U together with all
additional functions/coefficients (in this case the right-hand
side f) are fixed at compile-time, which allows the genera-
tion of very efficient low-level code since the code can be
generated for the specific given variational problem and the
specific given finite element(s).

Just like Analysa, FEniCS (or FFC) supports the specifi-
cation of actions, but while Analysa allows the specification
of a general expression that can later be treated as a bilinear
form, by applying it to a pair of function spaces, or as a lin-
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Table 6 Specifying the linear form for the action of the bilinear
form (9) with FEniCS using piecewise linear elements on tetrahedra

element = FiniteElement("Lagrange",
"tetrahedron", 1)

v = BasisFunction(element)
U = Function(element)

a = dot(grad(v), grad(U))*dx

ear form, by applying it to a function space and a given fixed
function, the arity of the form must be known at the time of
specification in the form language of FFC. As an example,
the specification of a linear form a representing the action
of the bilinear form (9) on a function U is given in Table 6.

A more detailed account of the various components of
the FEniCS project is given below in Sect. 9.

2.5 FreeFEM

FreeFEM [57, 105] implements a domain-specific language
for finite element solution of partial differential equations.
The language is based on C++, extended with a special
language that allows the specification of variational prob-
lems. In this respect, FreeFEM is a compiler, but it also
provides an integrated development environment (IDE) in
which programs can be entered, compiled (with a special
compiler) and executed. Visualization of solutions is also
provided.

FreeFEM comes in two flavors, the current version
FreeFEM++ which only supports 2D problems and the
3D version FreeFEM3D. Support for 3D problems will be
added to FreeFEM++ in the future [105].

To specify the variational problem for Poisson’s equa-
tion with FreeFEM++, one must first define the test and
trial spaces (which we here take to be the same space V),
and then the test and trial functions v and U, as well as
the function f for the right-hand side. One may then de-
fine the bilinear form a and linear form L as illustrated in
Table 7.

2.6 GetDP

GetDP [32, 33] is a finite element solver which provides a
special declarative language for the specification of varia-
tional problems. Unlike FreeFEM, GetDP is not a compiler,
nor is it a library, but it will be classified here under the
category of domain-specific languages. At start-up, GetDP
parses a problem specification from a given input file and
then proceeds according to the specification.

To specify the variational problem for Poisson’s equation
with GetDP, one must first give a definition of a function
space, which may include constraints and definition of sub
spaces. A variational problem may then be specified in terms

Table 7 Specifying the variational problem for Poisson’s equation
with FreeFEM++ using piecewise linear elements on triangles (as de-
termined by the mesh)

fespace V(mesh, P1);
V v, U;
func f = ...;

varform a(v, U) = int2d(mesh)(dx(v)*dx(U) +
dy(v)*dy(U));

varform L(v) = int2d(mesh)(v*f);

Table 8 Specifying the bilinear form for Poisson’s equation with
GetDP

FunctionSpace {
{ Name V; Type Form0;
BasisFunction {
{ ... }

}
}

}
Formulation {
{ Name Poisson; Type FemEquation;
Quantity {
{ Name v; Type Local; NameOfSpace V; }

}
Equation {
Galerkin { [Dof{Grad v}, {Grad v}];

....
}

}
}

}

of functions from the previously defined function spaces, as
illustrated in Table 8.

2.7 Sundance

Sundance [97–99] is a C++ library for finite element so-
lution of partial differential equations (PDEs), with spe-
cial emphasis on large-scale PDE-constrained optimiza-
tion.

Sundance supports automatic generation of the system
of discrete equations from a given variational problem and
has a powerful symbolic engine, which allows variational
problems to be specified and differentiated symbolically
natively in C++. Sundance thus falls into the category of
systems providing their functionality in the form of a li-
brary.

To specify the variational problem for Poisson’s equation
with Sundance, one must specify a test function v, an un-
known function U, the right-hand side f, the differential op-
erator grad and the variational problem written in the form
a(v,U) − L(v) = 0, as shown in Table 9.
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Table 9 Specifying the variational problem for Poisson’s equation
with Sundance using piecewise linear elements on tetrahedra (as de-
termined by the mesh)

Expr v = new TestFunction(new Lagrange(1));
Expr U = new UnknownFunction(new Lagrange(1));
Expr f = new DiscreteFunction(...);
Expr dx = new Derivative(0);
Expr dy = new Derivative(1);
Expr dz = new Derivative(2);
Expr grad = List(dx, dy, dz);
Expr poisson = Integral((grad*v)*(grad*U) -
v*f);

3 The Finite Element Method

It once happened that a man thought he had written original
verses, and was then found to have read them word for word,
long before, in some ancient poet.

Gottfried Wilhelm Leibniz
Nouveaux essais sur l’entendement humain (1704/1764)

In this section, we give an overview of the finite element
method, with special focus on the general algorithmic as-
pects that form the basis for its automation. In many ways,
the material is standard [14, 18, 24, 25, 43, 68, 111, 113,
119], but it is presented here to give a background for the
continued discussion on the automation of the finite element
method and to summarize the notation used throughout the
remainder of this paper. The purpose is also to make pre-
cise what we set out to automate, including assumptions and
limitations.

3.1 Galerkin’s Method

Galerkin’s method (the weighted residual method) was
originally formulated with global polynomial spaces [55]
and goes back to the variational principles of Leibniz,
Euler, Lagrange, Dirichlet, Hamilton, Castigliano [23],
Rayleigh [108] and Ritz [109]. Galerkin’s method with
piecewise polynomial spaces (V̂h,Vh) is known as the finite
element method. The finite element method was introduced
by engineers for structural analysis in the 1950s and was
independently proposed by Courant in 1943 [28]. The ex-
ploitation of the finite element method among engineers and
mathematicians exploded in the 1960s. In addition to the
references listed above, we point to the following general
references: [15, 36–42].

We shall refer to the family of Galerkin methods (weight-
ed residual methods) with piecewise (polynomial) func-
tion spaces as the finite element method, including Petrov-
Galerkin methods (with different test and trial spaces) and
Galerkin/least-squares methods.

3.2 Finite Element Function Spaces

A central aspect of the finite element method is the con-
struction of discrete function spaces by piecing together lo-
cal function spaces on the cells {K}K∈T of a mesh T of
a domain � = ∪K∈T ⊂ R

d , with each local function space
defined by a finite element.

3.2.1 The Finite Element

We shall use the standard Ciarlet [18, 25] definition of a fi-
nite element, which reads as follows. A finite element is a
triple (K,PK,NK), where

• K ⊂ R
d is a bounded closed subset of R

d with nonempty
interior and piecewise smooth boundary;

• PK is a function space on K of dimension nK < ∞;
• NK = {νK

1 , νK
2 , . . . , νK

nK
} is a basis for P ′

K (the bounded
linear functionals on PK ).

We shall further assume that we are given a nodal ba-
sis {φK

i }nK

i=1 for PK that for each node νK
i ∈ NK satisfies

νK
i (φK

j ) = δij for j = 1,2, . . . , nK . Note that this implies
that for any v ∈PK , we have

v =
nK∑

i=1

νK
i (v)φK

i . (16)

In the simplest case, the nodes are given by evaluation of
function values or directional derivatives at a set of points
{xK

i }nK

i=1, that is,

νK
i (v) = v(xK

i ), i = 1,2, . . . , nK. (17)

3.2.2 The Local-to-Global Mapping

Now, to define a global function space Vh = span{φi}Ni=1 on
� and a set of global nodes N = {νi}Ni=1 from a given set
{(K,PK,NK)}K∈T of finite elements, we also need to spec-
ify how the local function spaces are pieced together. We
do this by specifying for each cell K ∈ T a local-to-global
mapping,

ιK : [1, nK ] → N, (18)

that specifies how the local nodes NK are mapped to global
nodes N , or more precisely,

νιK(i)(v) = νK
i (v|K), i = 1,2, . . . , nK, (19)

for any v ∈ Vh, that is, each local node νK
i ∈ NK corre-

sponds to a global node νιK(i) ∈ N determined by the local-
to-global mapping ιK .
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3.2.3 The Global Function Space

We now define the global function space Vh as the set of
functions on � satisfying

v|K ∈PK ∀K ∈ T , (20)

and furthermore satisfying the constraint that if for any pair
of cells (K,K ′) ∈ T × T and local node numbers (i, i′) ∈
[1, nK ] × [1, nK ′ ], we have

ιK(i) = ιK ′(i′), (21)

then

νK
i (v|K) = νK ′

i′ (v|K ′), (22)

where v|K denotes the continuous extension to K of the re-
striction of v to the interior of K , that is, if two local nodes
νK
i and νK ′

i′ are mapped to the same global node, then they
must agree for each function v ∈ Vh.

Note that by this construction, the functions of Vh are un-
defined on cell boundaries, unless the constraints (22) force
the (restrictions of) functions of Vh to be continuous on cell
boundaries, in which case we may uniquely define the func-
tions of Vh on the entire domain �. However, this is usually
not a problem, since we can perform all operations on the
restrictions of functions to the local cells.

3.2.4 Lagrange Finite Elements

The basic example of finite element function spaces is
given by the family of Lagrange finite elements on sim-
plices in R

d . A Lagrange finite element is given by a triple
(K,PK,NK), where the K is a simplex in R

d (a line in R, a
triangle in R

2, a tetrahedron in R
3), PK is the space Pq(K)

of scalar polynomials of degree ≤ q on K and each νK
i ∈

NK is given by point evaluation at some point xK
i ∈ K , as

illustrated in Fig. 1 for q = 1 and q = 2 on a triangulation
of some domain � ⊂ R

2. Note that by the placement of the
points {xK

i }nK

i=1 at the vertices and edge midpoints of each
cell K , the global function space is the set of continuous
piecewise polynomials of degree q = 1 and q = 2 respec-
tively.

3.2.5 The Reference Finite Element

As we have seen, a global discrete function space Vh

may be described by a mesh T , a set of finite elements
{(K,PK,NK)}K∈T and a set of local-to-global mappings
{ιK}K∈T . We may simplify this description further by in-
troducing a reference finite element (K0,P0,N0), where
N0 = {ν0

1 , ν0
2 , . . . , ν0

n0
}, and a set of invertible mappings

{FK}K∈T that map the reference cell K0 to the cells of the
mesh,

K = FK(K0) ∀K ∈ T , (23)

as illustrated in Fig. 2. Note that K0 is generally not part of
the mesh. Typically, the mappings {FK}K∈T are affine, that
is, each FK can be written in the form FK(X) = AKX +
bK for some matrix AK ∈ R

d×d and some vector bK ∈ R
d ,

or isoparametric, in which case the components of FK are
functions in P0.

For each cell K ∈ T , the mapping FK generates a func-
tion space on FK given by

PK = {v = v0 ◦ F−1
K : v0 ∈P0}, (24)

that is, each function v = v(x) may be written in the form
v(x) = v0(F

−1
K (x)) = v0 ◦ F−1

K (x) for some v0 ∈ P0.
Similarly, we may also generate for each K ∈ T a set of

nodes NK on PK given by

NK = {νK
i : νK

i (v) = ν0
i (v ◦ FK), i = 1,2, . . . , n0}. (25)

Using the set of mappings {FK }K∈T , we may thus generate
from the reference finite element (K0,P0,N0) a set of finite
elements {(K,PK,NK)}K∈T given by

K = FK(K0),

PK = {v = v0 ◦ F−1
K : v0 ∈ P0}, (26)

NK = {νK
i : νK

i (v) = ν0
i (v ◦ FK), i = 1,2, . . . , n0 = nK}.

With this construction, it is also simple to generate a set of
nodal basis functions {φK

i }nK

i=1 on K from a set of nodal

Fig. 1 Distribution of the nodes
on a triangulation of a domain
� ⊂ R

2 for Lagrange finite
elements of degree q = 1 (left)
and q = 2 (right)
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Fig. 2 The (affine) mapping FK from a reference cell K0 to some cell
K ∈ T

basis functions {�i}n0
i=1 on the reference element satisfy-

ing ν0
i (�j ) = δij . Noting that if φK

i = �i ◦ F−1
K for i =

1,2, . . . , nK , then

νK
i (φK

j ) = ν0
i (φK

j ◦ FK) = ν0
i (�j ) = δij , (27)

so {φK
i }nK

i=1 is a nodal basis for PK .
Note that not all finite elements may be generated from a

reference finite element using this simple construction. For
example, this construction fails for the family of Hermite fi-
nite elements [18, 24, 25]. Other examples include H(div)

and H(curl) conforming finite elements which require a spe-
cial mapping of the basis functions from the reference ele-
ment.

However, we shall limit our current discussion to finite el-
ements that can be generated from a reference finite element
according to (26), which includes all affine and isoparamet-
ric finite elements with nodes given by point evaluation such
as the family of Lagrange finite elements on simplices.

We may thus define a discrete function space by speci-
fying a mesh T , a reference finite element (K,P0,N0), a
set of local-to-global mappings {ιK}K∈T and a set of map-
pings {FK}K∈T from the reference cell K0, as demonstrated
in Fig. 3. Note that in general, the mappings need not be
of the same type for all cells K and not all finite elements
need to be generated from the same reference finite ele-
ment. In particular, one could employ a different (higher-
degree) isoparametric mapping for cells on a curved bound-
ary.

3.3 The Variational Problem

We shall assume that we are given a set of discrete function
spaces defined by a corresponding set of finite elements on

Fig. 3 Piecing together local function spaces on the cells of a mesh
to form a discrete function space on �, generated by a reference finite
element (K0,P0,N0), a set of local-to-global mappings {ιK }K∈T and
a set of mappings {FK }K∈T

some triangulation T of a domain � ⊂ R
d . In particular, we

are given a pair of function spaces,

V̂h = span{φ̂i}Ni=1,
(28)

Vh = span{φi}Ni=1,

which we refer to as the test and trial spaces respectively.
We shall also assume that we are given a variational prob-

lem of the form: Find U ∈ Vh such that

a(U ;v) = L(v) ∀v ∈ V̂h, (29)

where a : Vh × V̂h → R is a semilinear form which is linear
in its second argument2 and L : V̂h → R is a linear form
(functional). Typically, the forms a and L of (29) are defined
in terms of integrals over the domain � or subsets of the
boundary ∂� of �.

3.3.1 Nonlinear Variational Problems

The variational problem (29) gives rise to a system of dis-
crete equations,

F(U) = 0, (31)

2We shall use the convention that a semilinear form is linear in each of
the arguments appearing after the semicolon. Furthermore, if a semi-
linear form a with two arguments is linear in both its arguments, we
shall use the notation

a(v,U) = a′(U ;v,U) = a′(U ;v)U, (30)

where a′ is the Fréchet derivative of a with respect to U , that is, we
write the bilinear form with the test function as its first argument.



Automating the Finite Element Method 103

for the vector (Ui) ∈ R
N of degrees of freedom of the solu-

tion U = ∑N
i=1 Uiφi ∈ Vh, where

Fi(U) = a(U ; φ̂i) − L(φ̂i), i = 1,2, . . . ,N. (32)

It may also be desirable to compute the Jacobian A = F ′
of the nonlinear system (31) for use in a Newton’s method.
We note that if the semilinear form a is differentiable in U ,
then the entries of the Jacobian A are given by

Aij = ∂Fi(U)

∂Uj

= ∂

∂Uj

a(U ; φ̂i) = a′(U ; φ̂i )
∂U

∂Uj

= a′(U ; φ̂i)φj = a′(U ; φ̂i , φj ). (33)

As an example, consider the nonlinear Poisson’s equation

−∇ · ((1 + u)∇u) = f in �,
(34)

u = 0 on ∂�.

Multiplying (34) with a test function v and integrating by
parts, we obtain
∫

�

∇v · ((1 + u)∇u)dx =
∫

�

vf dx, (35)

and thus a discrete nonlinear variational problem of the
form (29), where

a(U ;v) =
∫

�

∇v · ((1 + U)∇U)dx,

(36)

L(v) =
∫

�

vf dx.

Linearizing the semilinear form a around U , we obtain

a′(U ;v,w) =
∫

�

∇v · (w∇U)dx

+
∫

�

∇v · ((1 + U)∇w)dx, (37)

for any w ∈ Vh. In particular, the entries of the Jacobian ma-
trix A are given by

Aij = a′(U ; φ̂i , φj ) =
∫

�

∇φ̂i · (φj∇U)dx

+
∫

�

∇φ̂i · ((1 + U)∇φj )dx. (38)

3.3.2 Linear Variational Problems

If the variational problem (29) is linear, the nonlinear sys-
tem (31) is reduced to the linear system

AU = b, (39)

for the degrees of freedom (Ui) ∈ R
N , where

Aij = a(φ̂i , φj ),
(40)

bi = L(φ̂i).

Note the relation to (33) in that Aij = a(φ̂i , φj ) =
a′(U ; φ̂i , φj ).

In Sect. 2, we saw the canonical example of a linear vari-
ational problem with Poisson’s equation,

−	u = f in �,
(41)

u = 0 on ∂�,

corresponding to a discrete linear variational problem of the
form (29), where

a(v,U) =
∫

�

∇v · ∇U dx,

(42)

L(v) =
∫

�

vf dx.

3.4 Multilinear Forms

We find that for both nonlinear and linear problems, the sys-
tem of discrete equations is obtained from the given varia-
tional problem by evaluating a set of multilinear forms on
the set of basis functions. Noting that the semilinear form a

of the nonlinear variational problem (29) is a linear form for
any given fixed U ∈ Vh and that the form a for a linear vari-
ational problem can be expressed as a(v,U) = a′(U ;v,U),
we thus need to be able to evaluate the following multilinear
forms:

a(U ; ·) : V̂h → R,

L : V̂h → R, (43)

a′(U ; ·, ·) : V̂h × Vh → R.

We shall therefore consider the evaluation of general multi-
linear forms of arity r > 0,

a : V 1
h × V 2

h × · · · × V r
h → R, (44)

defined on the product space V 1
h × V 2

h × · · · × V r
h of a

given set {V j
h }rj=1 of discrete function spaces on a trian-

gulation T of a domain � ⊂ R
d . In the simplest case, all

function spaces are equal but there are many important ex-
amples, such as mixed methods, where it is important to
consider arguments coming from different function spaces.
We shall restrict our attention to multilinear forms expressed
as integrals over the domain � (or subsets of its bound-
ary).
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Let now {φ1
i }N1

i=1, {φ2
i }N2

i=1, . . . , {φr
i }N

r

i=1 be bases of V 1
h ,

V 2
h , . . . , V r

h respectively and let i = (i1, i2, . . . , ir ) be a mul-
tiindex of length |i| = r . The multilinear form a then defines
a rank r tensor given by

Ai = a(φ1
i1
, φ2

i2
, . . . , φr

ir
) ∀i ∈ I, (45)

where I is the index set

I =
r∏

j=1

[1, |V j
h |]

= {(1,1, . . . ,1), (1,1, . . . ,2), . . . , (N1,N2, . . . ,Nr)}.
(46)

For any given multilinear form of arity r , the tensor A

is a (typically sparse) tensor of rank r and dimension
(|V 1

h |, |V 2
h |, . . . , |V r

h |) = (N1,N2, . . . ,Nr).
Typically, the arity of the multilinear form a is r = 2,

that is, a is a bilinear form, in which case the corresponding
tensor A is a matrix (the “stiffness matrix”), or the arity of
the multilinear form a is r = 1, that is, a is a linear form, in
which case the corresponding tensor A is a vector (“the load
vector”).

Sometimes it may also be of interest to consider forms of
higher arity. As an example, consider the discrete trilinear
form a : V 1

h × V 2
h × V 3

h → R associated with the weighted
Poisson’s equation −∇ · (w∇u) = f . The trilinear form a is
given by

a(v,U,w) =
∫

�

w∇v · ∇U dx, (47)

for w = ∑N3

i=1 wiφ
3
i ∈ V 3

h a given discrete weight function.
The corresponding rank three tensor is given by

Ai =
∫

�

φ3
i3
∇φ1

i1
· ∇φ2

i2
dx. (48)

Noting that for any w = ∑N3

i=1 wiφ
3
i , the tensor contraction

A : w = (
∑N3

i3=1 Ai1i2i3wi3)i1i2 is a matrix, we may thus ob-
tain the solution U by solving the linear system

(A : w)U = b, (49)

where bi = L(φ1
i1
) = ∫

�
φ1

i1
f dx. Of course, if the solu-

tion is needed only for one single weight function w, it
is more efficient to consider w as a fixed function and
directly compute the matrix A associated with the bilin-
ear form a(·, ·,w). In some cases, it may even be desir-
able to consider the function U as being fixed and directly
compute a vector A (the action) associated with the linear
form a(·,U,w), as discussed above in Sect. 2.1. It is thus
important to consider multilinear forms of general arity r .

3.5 Assembling the Discrete System

The standard algorithm [68, 88, 119] for computing the ten-
sor A is known as assembly; the tensor is computed by iter-
ating over the cells of the mesh T and adding from each cell
the local contribution to the global tensor A.

To explain how the standard assembly algorithm applies
to the computation of the tensor A defined in (45) from a
given multilinear form a, we note that if the multilinear form
a is expressed as an integral over the domain �, we can write
the multilinear form as a sum of element multilinear forms,

a =
∑

K∈T
aK, (50)

and thus

Ai =
∑

K∈T
aK(φ1

i1
, φ2

i2
, . . . , φr

ir
). (51)

We note that in the case of Poisson’s equation, −	u =
f , the element bilinear form aK is given by aK(v,U) =∫
K

∇v · ∇U dx.

We now let ι
j
K : [1, n

j
K ] → [1,Nj ] denote the local-to-

global mapping introduced above in Sect. 3.2 for each dis-
crete function space V

j
h , j = 1,2, . . . , r , and define for each

K ∈ T the collective local-to-global mapping ιK : IK → I
by

ιK(i) = (ι1K(i1), ι
2
K(i2), . . . , ι

3
K(i3)) ∀i ∈ IK, (52)

where IK is the index set

IK =
r∏

j=1

[1, |Pj
K |]

= {(1,1, . . . ,1), (1,1, . . . ,2), . . . , (n1
K,n2

K, . . . , nr
K)}.

(53)

Furthermore, for each V
j
h we let {φK,j

i }n
j
K

i=1 denote the

restriction to an element K of the subset of the basis {φj
i }Nj

i=1

of V
j
h supported on K , and for each i ∈ I we let Ti ⊂ T

denote the subset of cells on which all of the basis functions
{φj

ij
}rj=1 are supported.

We may now compute the tensor A by summing the con-
tributions from each local cell K ,

Ai =
∑

K∈T
aK(φ1

i1
, φ2

i2
, . . . , φr

ir
) =

∑

K∈Ti

aK(φ1
i1
, φ2

i2
, . . . , φr

ir
)

=
∑

K∈Ti

aK(φ
K,1
(ι1K)−1(i1)

, φ
K,2
(ι2K)−1(i2)

, . . . , φ
K,r

(ιrK )−1(ir )
). (54)

This computation may be carried out efficiently by iterating
once over all cells K ∈ T and adding the contribution from
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each K to every entry Ai of A such that K ∈ Ti , as illus-
trated in Algorithm 1. In particular, we never need to form
the set Ti , which is implicit through the set of local-to-global
mappings {ιK}K∈T .

Algorithm 1 A = Assemble(a, {V j
h }rj=1, {ιK}K∈T , T )

A = 0
for K ∈ T

for i ∈ IK

AιK(i) = AιK(i) + aK(φ
K,1
i1

, φ
K,2
i2

, . . . , φ
K,r
ir

)

end for
end for

The assembly algorithm may be improved by defining the
element tensor AK by

AK
i = aK(φ

K,1
i1

, φ
K,2
i2

, . . . , φ
K,r
ir

) ∀i ∈ IK. (55)

For any multilinear form of arity r , the element tensor
AK is a (typically dense) tensor of rank r and dimension
(n1

K,n2
K, . . . , nr

K).
By computing first on each cell K the element tensor AK

before adding the entries to the tensor A as in Algorithm 2,
one may take advantage of optimized library routines for
performing each of the two steps. Note that Algorithm 2 is
independent of the algorithm used to compute the element
tensor.

Algorithm 2 A = Assemble(a, {V j
h }rj=1, {ιK }K∈T , T )

A = 0
for K ∈ T

Compute AK according to (55)
Add AK to A according to ιK

end for

Considering first the second operation of inserting
(adding) the entries of AK into the global sparse tensor A,
this may in principle be accomplished by iterating over all
i ∈ IK and adding the entry AK

i at position ιK(i) of A as il-
lustrated in Fig. 4. However, sparse matrix libraries such as
PETSc [6–8] often provide optimized routines for this type
of operation, which may significantly improve the perfor-
mance compared to accessing each entry of A individually
as in Algorithm 1. Even so, the cost of adding AK to A may
be substantial even with an efficient implementation of the
sparse data structure for A, see [84].

A similar approach can be taken to the first step of com-
puting the element tensor, that is, an optimized library rou-
tine is called to compute the element tensor. Because of the
wide variety of multilinear forms that appear in applications,

a separate implementation is needed for any given multilin-
ear form. Therefore, the implementation of this code is often
left to the user, as illustrated above in Sect. 2.2 and Sect. 2.3,
but the code in question may also be automatically generated
and optimized for each given multilinear form. We shall re-
turn to this question below in Sect. 5 and Sect. 9.

3.6 Summary

If we thus view the finite element method as a machine
that automates the discretization of differential equations, or
more precisely, a machine that generates the system of dis-
crete equations (31) from a given variational problem (29),
an automation of the finite element method is straightfor-
ward up to the point of computing the element tensor for
any given multilinear form and the local-to-global mapping
for any given discrete function space; if the element tensor
AK and the local-to-global mapping ιK can be computed on
any given cell K , the global tensor A may be computed by
Algorithm 2.

Assuming now that each of the discrete function spaces
involved in the definition of the variational problem (29) is
generated on some mesh T of the domain � from some
reference finite element (K0,P0,N0) by a set of local-to-
global mappings {ιK }K∈T and a set of mappings {FK}K∈T
from the reference cell K0, as discussed in Sect. 3.2, we
identify the following key steps towards an automation of
the finite element method:

• The automatic and efficient tabulation of the nodal basis
functions on the reference finite element (K0,P0,N0);

• The automatic and efficient evaluation of the element ten-
sor AK on each cell K ∈ T ;

• The automatic and efficient assembly of the global tensor
A from the set of element tensors {AK }K∈T and the set
of local-to-global mappings {ιK }K∈T .

We discuss each of these key steps below.

4 Automating the Tabulation of Basis Functions

Given a reference finite element (K0,P0,N0), we wish to
generate the unique nodal basis {�i}n0

i=1 for P0 satisfying

ν0
i (�j ) = δij , i, j = 1,2, . . . , n0. (56)

In some simple cases, these nodal basis functions can be
worked out analytically by hand or found in the literature,
see for example [68, 119]. As a concrete example, consider
the nodal basis functions in the case when P0 is the set of
quadratic polynomials on the reference triangle K0 with ver-
tices at v1 = (0,0), v2 = (1,0) and v3 = (0,1) as in Fig. 5
and nodes N0 = {ν0

1 , ν0
2 , . . . , ν0

6 } given by point evaluation
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Fig. 4 Adding the entries of the
element tensor AK to the global
tensor A using the
local-to-global mapping ιK ,
illustrated here for a rank two
tensor (a matrix)

at the vertices and edge midpoints. A basis for P0 is then
given by

�1(X) = (1 − X1 − X2)(1 − 2X1 − 2X2),

�2(X) = X1(2X1 − 1),

�3(X) = X2(2X2 − 1),

�4(X) = 4X1X2, (57)

�5(X) = 4X2(1 − X1 − X2),

�6(X) = 4X1(1 − X1 − X2),

and it is easy to verify that this is the nodal basis. However,
in the general case, it may be very difficult to obtain analyt-
ical expressions for the nodal basis functions. Furthermore,
copying the often complicated analytical expressions into a
computer program is prone to errors and may even result in
inefficient code.

In recent work, Kirby [78–80] has proposed a solution to
this problem; by expanding the nodal basis functions for P0

as linear combinations of another (non-nodal) basis for P0

which is easy to compute, one may translate operations on
the nodal basis functions, such as evaluation and differenti-
ation, into linear algebra operations on the expansion coeffi-
cients.

This new linear algebraic approach to computing and rep-
resenting finite element basis functions removes the need
for having explicit expressions for the nodal basis functions,
thus simplifying or enabling the implementation of compli-
cated finite elements.

4.1 Tabulating Polynomial Spaces

To generate the set of nodal basis functions {�i}n0
i=1 for P0,

we must first identify some other known basis {�i}n0
i=1 for

P0, referred to in [78] as the prime basis. We return to the
question of how to choose the prime basis below.

Writing now each �i as a linear combination of the prime
basis functions with α ∈ R

d×d the matrix of coefficients, we
have

�i =
n0∑

j=1

αij�j , i = 1,2, . . . , n0. (58)

The conditions (56) thus translate into

δij = ν0
i (�j ) =

n0∑

k=1

αjkν
0
i (�k), i, j = 1,2, . . . , n0, (59)

or

Vα
 = I, (60)

where V ∈ R
n0×n0 is the (Vandermonde) matrix with entries

Vij = ν0
i (�j ) and I is the n0 × n0 identity matrix. Thus,

the nodal basis {�i}n0
i=1 is easily computed by first comput-

ing the matrix V by evaluating the nodes at the prime basis
functions and then solving the linear system (60) to obtain
the matrix α of coefficients.

In the simplest case, the space P0 is the set Pq(K0) of
polynomials of degree ≤ q on K0. For typical reference
cells, including the reference triangle and the reference tetra-
hedron shown in Fig. 5, orthogonal prime bases are available
with simple recurrence relations for the evaluation of the ba-
sis functions and their derivatives, see for example [31]. If
P0 = Pq(K0), it is thus straightforward to evaluate the prime
basis and thus to generate and solve the linear system (60)

that determines the nodal basis.

4.2 Tabulating Spaces with Constraints

In other cases, the space P0 may be defined as some sub-
space of Pq(K0), typically by constraining certain deriva-
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Fig. 5 The reference triangle
(left) with vertices at
v1 = (0,0), v2 = (1,0) and
v3 = (0,1), and the reference
tetrahedron (right) with vertices
at v1 = (0,0,0), v2 = (1,0,0),
v3 = (0,1,0) and v4 = (0,0,1)

tives of the functions in P0 or the functions themselves to lie
in Pq ′(K0) for some q ′ < q on some part of K0. Examples
include the Raviart–Thomas [107], Brezzi–Douglas–Fortin–
Marini [20] and Arnold–Winther [2] elements, which put
constraints on the derivatives of the functions in P0.

Another more obvious example, taken from [78], is the
case when the functions in P0 are constrained to Pq−1(γ0)

on some part γ0 of the boundary of K0 but are otherwise in
Pq(K0), which may be used to construct the function space
on a p-refined cell K if the function space on a neighboring
cell K ′ with common boundary γ0 is only Pq−1(K

′). We
may then define the space P0 by

P0 = {v ∈ Pq(K0) : v|γ0 ∈ Pq−1(γ0)}
= {v ∈ Pq(K0) : l(v) = 0}, (61)

where the linear functional l is given by integration against
the qth degree Legendre polynomial along the boundary γ0.

In general, one may define a set {li}nc

i=1 of linear function-
als (constraints) and define P0 as the intersection of the null
spaces of these linear functionals on Pq(K0),

P0 = {v ∈ Pq(K0) : li (v) = 0, i = 1,2, . . . , nc}. (62)

To find a prime basis {�i}n0
i=1 for P0, we note that any

function in P0 may be expressed as a linear combination

of some basis functions {�̄i}|Pq(K0)|
i=1 for Pq(K0), which we

may take as the orthogonal basis discussed above. We find

that if � = ∑|Pq(K0)|
i=1 βi�̄i , then

0 = li (�) =
|Pq(K0)|∑

j=1

βj li(�̄j ), i = 1,2, . . . , nc, (63)

or

Lβ = 0, (64)

where L is the nc × |Pq(K0)| matrix with entries

Lij = li (�̄j ), i = 1,2, . . . , nc, j = 1,2, . . . , |Pq(K0)|.
(65)

A prime basis for P0 may thus be found by computing the
nullspace of the matrix L, for example by computing its sin-
gular value decomposition (see [56]). Having thus found the
prime basis {�i}n0

i=1, we may proceed to compute the nodal
basis as before.

5 Automating the Computation of the Element Tensor

As we saw in Sect. 3.5, given a multilinear form a defined on
the product space V 1

h × V 2
h × · · · × V r

h , we need to compute
for each cell K ∈ T the rank r element tensor AK given by

AK
i = aK(φ

K,1
i1

, φ
K,2
i2

, . . . , φ
K,r
ir

) ∀i ∈ IK, (66)

where aK is the local contribution to the multilinear form a

from the cell K .
We investigate below two very different ways to compute

the element tensor, first a modification of the standard ap-
proach based on quadrature and then a novel approach based
on a special tensor contraction representation of the element
tensor, yielding speedups of several orders of magnitude in
some cases.



108 A. Logg

5.1 Evaluation by Quadrature

The element tensor AK is typically evaluated by quadra-
ture on the cell K . Many finite element libraries like Diff-
pack [22, 88] and deal.II [9–11] provide the values of rel-
evant quantities like basis functions and their derivatives at
the quadrature points on K by mapping precomputed values
of the corresponding basis functions on the reference cell K0

using the mapping FK : K0 → K .
Thus, to evaluate the element tensor AK for Poisson’s

equation by quadrature on K , one computes

AK
i =

∫

K

∇φ
K,1
i1

· ∇φ
K,2
i2

dx

≈
Nq∑

k=1

wk∇φ
K,1
i1

(xk) · ∇φ
K,2
i2

(xk)detF ′
K(xk), (67)

for some suitable set of quadrature points {xi}Nq

i=1 ⊂ K

with corresponding quadrature weights {wi}Nq

i=1, where we
assume that the quadrature weights are scaled so that
∑Nq

i=1 wi = |K0|. Note that the approximation (67) can be
made exact for a suitable choice of quadrature points if the
basis functions are polynomials.

Comparing (67) to the example codes in Table 3 and Ta-
ble 4, we note the similarities between (67) and the two
codes. In both cases, the gradients of the basis functions as
well as the products of quadrature weight and the determi-
nant of F ′

K are precomputed at the set of quadrature points
and then combined to produce the integral (67).

If we assume that the two discrete spaces V 1
h and V 2

h

are equal, so that the local basis functions {φK,1
i }n1

K

i=1 and

{φK,2
i }n2

K

i=1 are all generated from the same basis {�i}n0
i=1

on the reference cell K0, the work involved in precomput-
ing the gradients of the basis functions at the set of quadra-
ture points amounts to computing for each quadrature point
xk and each basis function φK

i the matrix–vector product
∇xφ

K
i (xk) = (F ′

K)−
(xk)∇X�i(Xk), that is,

∂φK
i

∂xj

(xk) =
d∑

l=1

∂Xl

∂xj

(xk)
∂�K

i

∂Xl

(Xk), (68)

where xk = FK(Xk) and φK
i = �i ◦ F−1

K . Note that the gra-

dients {∇X�i(Xk)}n0,Nq

i=1,k=1 of the reference element basis
functions at the set of quadrature points on the reference el-
ement remain constant throughout the assembly process and
may be pretabulated and stored. Thus, the gradients of the
basis functions on K may be computed in Nqn0d

2 multiply–
add pairs (MAPs) and the total work to compute the element
tensor AK is Nqn0d

2 +Nqn2
0(d + 2) ∼ Nqn2

0d , if we ignore
that we also need to compute the mapping FK , and the de-
terminant and inverse of F ′

K . In Sect. 5.2 and Sect. 7 below,

we will see that this operation count may be significantly
reduced.

5.2 Evaluation by Tensor Representation

It has long been known that it is sometimes possible to speed
up the computation of the element tensor by precomputing
certain integrals on the reference element. Thus, for any spe-
cific multilinear form, it may be possible to find quantities
that can be precomputed in order to optimize the code for the
evaluation of the element tensor. These ideas were first in-
troduced in a general setting in [83, 84] and later formalized
and automated in [81, 82]. A similar approach was imple-
mented in early versions of DOLFIN [61, 66, 67], but only
for piecewise linear elements.

We first consider the case when the mapping FK from the
reference cell is affine, and then discuss possible extensions
to non-affine mappings such as when FK is the isoparamet-
ric mapping. As a first example, we consider again the com-
putation of the element tensor AK for Poisson’s equation.
As before, we have

AK
i =

∫

K

∇φ
K,1
i1

· ∇φ
K,2
i2

dx =
∫

K

d∑

β=1

∂φ
K,1
i1

∂xβ

∂φ
K,2
i2

∂xβ

dx,

(69)

but instead of evaluating the gradients on K and then pro-
ceeding to evaluate the integral by quadrature, we make a
change of variables to write

AK
i =

∫

K0

d∑

β=1

d∑

α1=1

∂Xα1

∂xβ

∂�1
i1

∂Xα1

×
d∑

α2=1

∂Xα2

∂xβ

∂�2
i2

∂Xα2

detF ′
K dX, (70)

and thus, if the mapping FK is affine so that the transforms
∂X/∂x and the determinant detF ′

K are constant, we obtain

AK
i = detF ′

K

d∑

α1=1

d∑

α2=1

d∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

∫

K0

∂�1
i1

∂Xα1

∂�2
i2

∂Xα2

dX

=
d∑

α1=1

d∑

α2=1

A0
iαGα

K, (71)

or

AK = A0 : GK, (72)

where

A0
iα =

∫

K0

∂�1
i1

∂Xα1

∂�2
i2

∂Xα2

dX,



Automating the Finite Element Method 109

Gα
K = detF ′

K

d∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

. (73)

We refer to the tensor A0 as the reference tensor and to the
tensor GK as the geometry tensor.

Now, since the reference tensor is constant and does not
depend on the cell K , it may be precomputed before the
assembly of the global tensor A. For the current example,
the work on each cell K thus involves first computing the
rank two geometry tensor GK , which may be done in d3

multiply–add pairs, and then computing the rank two ele-
ment tensor AK as the tensor contraction (72), which may
be done in n2

0d
2 multiply–add pairs. Thus, the total opera-

tion count is d3 + n2
0d

2 ∼ n2
0d

2, which should be compared
to Nqn2

0d for the standard quadrature-based approach. The
speedup in this particular case is thus roughly a factor Nq/d ,
which may be a significant speedup, in particular for higher
order elements.

As we shall see, the tensor representation (72) general-
izes to other multilinear forms as well. To see this, we need
to make some assumptions about the structure of the multi-
linear form (44). We shall assume that the multilinear form a

is expressed as an integral over � of a weighted sum of prod-
ucts of basis functions or derivatives of basis functions. In
particular, we shall assume that the element tensor AK can
be expressed as a sum, where each term takes the following
canonical form,

AK
i =

∑

γ∈C

∫

K

m∏

j=1

cj (γ )D
δj (γ )
x φ

K,j

ιj (i,γ )[κj (γ )]dx, (74)

where C is some given set of multiindices, each coefficient
cj maps the multiindex γ to a real number, ιj maps (i, γ )

to a basis function index, κj maps γ to a component index
(for vector or tensor valued basis functions) and δj maps
γ to a derivative multiindex. To distinguish component in-
dices from indices for basis functions, we use [·] to denote
a component index and subscript to denote a basis function
index. In the simplest case, the number of factors m is equal
to the arity r of the multilinear form (rank of the tensor), but
in general, the canonical form (74) may contain factors that
correspond to additional functions which are not arguments
of the multilinear form. This is the case for the weighted
Poisson’s equation (47), where m = 3 and r = 2. In general,
we thus have m > r .

As an illustration of this notation, we consider again the
bilinear form for Poisson’s equation and write it in the nota-
tion of (74). We will also consider a more involved example
to illustrate the generality of the notation. From (69), we
have

AK
i =

∫

K

d∑

γ=1

∂φ
K,1
i1

∂xγ

∂φ
K,2
i2

∂xγ

dx

=
d∑

γ=1

∫

K

∂φ
K,1
i1

∂xγ

∂φ
K,2
i2

∂xγ

dx, (75)

and thus, in the notation of (74),

m = 2,

C = [1, d],
c(γ ) = (1,1),

ι(i, γ ) = (i1, i2), (76)

κ(γ ) = (∅,∅),

δ(γ ) = (γ, γ ),

where ∅ denotes an empty component index (the basis func-
tions are scalar).

As another example, we consider the bilinear form for
a stabilization term appearing in a least-squares stabilized
cG(1)cG(1) method for the incompressible Navier–Stokes
equations [46, 58–60],

a(v,U) =
∫

�

(w · ∇v) · (w · ∇U)dx

=
∫

�

d∑

γ1,γ2,γ3=1

w[γ2]∂v[γ1]
∂xγ2

w[γ3]∂U [γ1]
∂xγ3

dx, (77)

where w ∈ V 3
h = V 4

h is a given approximation of the veloc-
ity, typically obtained from the previous iteration in an iter-
ative method for the nonlinear Navier–Stokes equations. To
write the element tensor for (77) in the canonical form (74),
we expand w in the nodal basis for P3

K = P4
K and note that

AK
i =

d∑

γ1,γ2,γ3=1

n3
K∑

γ4=1

n4
K∑

γ5=1

∫

K

∂φ
K,1
i1

[γ1]
∂xγ2

∂φ
K,2
i2

[γ1]
∂xγ3

× wK
γ4

φK,3
γ4

[γ2]wK
γ5

φK,4
γ5

[γ3]dx. (78)

We may then write the element tensor AK for the bilinear
form (77) in the canonical form (74), with

m = 4,

C = [1, d]3 × [1, n3
K ] × [1, n4

K ],
c(γ ) = (1,1,wK

γ4
,wK

γ5
),

(79)
ι(i, γ ) = (i1, i2, γ4, γ5),

κ(γ ) = (γ1, γ1, γ2, γ3),

δ(γ ) = (γ2, γ3,∅,∅),

where ∅ denotes an empty derivative multiindex (no differ-
entiation).
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In [82], it is proved that any element tensor AK that can
be expressed in the general canonical form (74), can be rep-
resented as a tensor contraction AK = A0 : GK of a refer-
ence tensor A0 independent of K and a geometry tensor GK .
A similar result is also presented in [81] but in less formal
notation. As noted above, element tensors that can be ex-
pressed in the general canonical form correspond to mul-
tilinear forms that can be expressed as integrals over � of
linear combinations of products of basis functions and their
derivatives. The representation theorem reads as follows.

Theorem 1 (Representation theorem) If FK is a given affine
mapping from a reference cell K0 to a cell K and {Pj

K}mj=1 is
a given set of discrete function spaces on K , each generated
by a discrete function space Pj

0 on the reference cell K0

through the affine mapping, that is, for each φ ∈ Pj
K there

is some � ∈ Pj

0 such that � = φ ◦ FK , then the element
tensor (74) may be represented as the tensor contraction of
a reference tensor A0 and a geometry tensor GK ,

AK = A0 : GK, (80)

that is,

AK
i =

∑

α∈A
A0

iαGα
K ∀i ∈ IK, (81)

where the reference tensor A0 is independent of K . In par-
ticular, the reference tensor A0 is given by

A0
iα =

∑

β∈B

∫

K0

m∏

j=1

D
δ′
j (α,β)

X �
j

ιj (i,α,β)[κj (α,β)]dX, (82)

and the geometry tensor GK is the outer product of the co-
efficients of any weight functions with a tensor that depends
only on the Jacobian F ′

K ,

Gα
K =

m∏

j=1

cj (α) detF ′
K

∑

β∈B′

m∏

j ′=1

|δj ′ (α,β)|
∏

k=1

∂Xδ′
j ′k(α,β)

∂xδj ′k(α,β)

, (83)

for some appropriate index sets A, B and B′. We refer to the
index set IK as the set of primary indices, the index set A
as the set of secondary indices, and to the index sets B and
B′ as sets of auxiliary indices.

The ranks of the tensors A0 and GK are determined by
the properties of the multilinear form a, such as the number
of coefficients and derivatives. Since the rank of the element
tensor AK is equal to the arity r of the multilinear form a,
the rank of the reference tensor A0 must be |iα| = r + |α|,
where |α| is the rank of the geometry tensor. For the exam-
ples presented above, we have |iα| = 4 and |α| = 2 in the
case of Poisson’s equation and |iα| = 8 and |α| = 6 for the
Navier–Stokes stabilization term.

Table 10 The tensor contraction representation AK = A0 : GK of the
element tensor AK for the bilinear form associated with a mass matrix
(test case 1)

a(v,U) = ∫
�

v U dx Rank

A0
iα = ∫

K0
�1

i1
�2

i2
dX |iα| = 2

Gα
K = detF ′

K |α| = 0

Table 11 The tensor contraction representation AK = A0 : GK of
the element tensor AK for the bilinear form associated with Poisson’s
equation (test case 2)

a(v,U) = ∫
�

∇v · ∇U dx Rank

A0
iα = ∫

K0

∂�1
i1

∂Xα1

∂�2
i2

∂Xα2
dX |iα| = 4

Gα
K = detF ′

K

∑d
β=1

∂Xα1
∂xβ

∂Xα2
∂xβ

|α| = 2

Table 12 The tensor contraction representation AK = A0 : GK of the
element tensor AK for the bilinear form associated with a lineariza-
tion of the nonlinear term u · ∇u in the incompressible Navier–Stokes
equations (test case 3)

a(v,U) = ∫
�

v · (w · ∇)U dx Rank

A0
iα = ∑d

β=1

∫
K0

�1
i1
[β] ∂�2

i2
[β]

∂Xα3
�3

α1
[α2]dX |iα| = 5

Gα
K = wK

α1
detF ′

K

∂Xα3
∂xα2

|α| = 3

The proof of Theorem 1 is constructive and gives an al-
gorithm for computing the representation (80). A number of
concrete examples with explicit formulas for the reference
and geometry tensors are given in Tables 10–13. We return
to these test cases below in Sect. 9.2, when we discuss the
implementation of Theorem 1 in the form compiler FFC and
present benchmark results for the test cases.

We remark that in general, a multilinear form will corre-
spond to a sum of tensor contractions, rather than a single
tensor contraction as in (80), that is,

AK =
∑

k

A0,k : GK,k. (84)

One such example is the computation of the element tensor
for the convection–reaction problem −	u + u = f , which
may be computed as the sum of a tensor contraction of a
rank four reference tensor A0,1 with a rank two geometry
tensor GK,1 and a rank two reference tensor A0,2 with a
rank zero geometry tensor GK,2.

5.3 Extension to Non-Affine Mappings

The tensor contraction representation (80) of Theorem 1 as-
sumes that the mapping FK from the reference cell is affine,
allowing the transforms ∂X/∂x and the determinant to be
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Table 13 The tensor contraction representation AK = A0 : GK of
the element tensor AK for the bilinear form

∫
�

ε(v) : ε(U)dx =
∫
�

1
4 (∇v + (∇v)
) : (∇U + (∇U)
)dx associated with the strain-

strain term of linear elasticity (test case 4). Note that the product ex-
pands into four terms which can be grouped in pairs of two. The repre-
sentation is given only for the first of these two terms

a(v,U) = ∫
�

ε(v) : ε(U)dx Rank

A0
iα = ∑d

β=1

∫
K0

∂�1
i1

[β]
∂Xα1

∂�2
i2

[β]
∂Xα2

dX |iα| = 4

Gα
K = 1

2 detF ′
K

∑d
β=1

∂Xα1
∂xβ

∂Xα2
∂xβ

|α| = 2

pulled out of the integral. To see how to extend this result
to the case when the mapping FK is non-affine, such as in
the case of an isoparametric mapping for a higher-order el-
ement used to map the reference cell to a curvilinear cell on
the boundary of �, we consider again the computation of the
element tensor AK for Poisson’s equation. As in Sect. 5.1,
we use quadrature to evaluate the integral, but take advan-
tage of the fact that the discrete function spaces P1

K and P2
K

on K may be generated from a pair of reference finite ele-
ments as discussed in Sect. 3.2. We have

AK
i =

∫

K

∇φ
K,1
i1

· ∇φ
K,2
i2

dx =
∫

K

d∑

β=1

∂φ
K,1
i1

∂xβ

∂φ
K,2
i2

∂xβ

dx

=
d∑

α1=1

d∑

α2=1

d∑

β=1

∫

K0

∂Xα1

∂xβ

∂Xα2

∂xβ

∂�1
i1

∂Xα1

∂�2
i2

∂Xα2

detF ′
K dX

≈
d∑

α1=1

d∑

α2=1

Nq∑

α3=1

wα3

∂�1
i1

∂Xα1

(Xα3)
∂�2

i2

∂Xα2

(Xα3)

×
d∑

β=1

∂Xα1

∂xβ

(Xα3)
∂Xα2

∂xβ

(Xα3)detF ′
K(Xα3). (85)

As before, we thus obtain a representation of the form

AK = A0 : GK, (86)

where the reference tensor A0 is now given by

A0
iα = wα3

∂�1
i1

∂Xα1

(Xα3)
∂�2

i2

∂Xα2

(Xα3), (87)

and the geometry tensor GK is given by

Gα
K = detF ′

K(Xα3)

d∑

β=1

∂Xα1

∂xβ

(Xα3)
∂Xα2

∂xβ

(Xα3). (88)

We thus note that a (different) tensor contraction represen-
tation of the element tensor AK is possible even if the map-
ping FK is non-affine. One may also prove a representation
theorem similar to Theorem 1 for non-affine mappings.

Comparing the representation (87–88) with the affine
representation (73), we note that the ranks of both A0 and
GK have increased by one. As before, we may precom-
pute the reference tensor A0 but the number of multiply–add
pairs to compute the element tensor AK increase by a fac-
tor Nq from n2

0d
2 to Nqn2

0d
2 (if again we ignore the cost of

computing the geometry tensor).
We also note that the cost has increased by a factor d

compared to the cost of a direct application of quadrature as
described in Sect. 5.1. However, by expressing the element
tensor AK as a tensor contraction, the evaluation of the ele-
ment tensor is more readily optimized than if expressed as a
triply nested loop over quadrature points and basis functions
as in Table 3 and Table 4.

As demonstrated below in Sect. 7, it may in some cases
be possible to take advantage of special structures such
as dependencies between different entries in the tensor A0

to significantly reduce the operation count. Another more
straightforward approach is to use an optimized library rou-
tine such as a BLAS call to compute the tensor contraction
as we shall see below in Sect. 7.1.

5.4 A Language for Multilinear Forms

To automate the process of evaluating the element ten-
sor AK , we must create a system that takes as input a multi-
linear form a and automatically computes the corresponding
element tensor AK . We do this by defining a language for
multilinear forms and automatically translating any given
string in the language to the canonical form (74). From the
canonical form, we may then compute the element tensor
AK by the tensor contraction AK = A0 : GK .

When designing such a language for multilinear forms,
we have two things in mind. First, the multilinear forms
specified in the language should be “close” to the corre-
sponding mathematical notation (taking into consideration
the obvious limitations of specifying the form as a string
in the ASCII character set). Second, it should be straightfor-
ward to translate a multilinear form specified in the language
to the canonical form (74).

A language may be specified formally by defining a for-
mal grammar that generates the language. The grammar
specifies a set of rewrite rules and all strings in the language
can be generated by repeatedly applying the rewrite rules.
Thus, one may specify a language for multilinear forms
by defining a suitable grammar (such as a standard EBNF
grammar [72]), with basis functions and multiindices as the
terminal symbols. One could then use an automating tool
(a compiler-compiler) to create a compiler for multilinear
forms.

However, since a closed canonical form is available for
the set of possible multilinear forms, we will take a more
explicit approach. We fix a small set of operations, allowing
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only multilinear forms that have a corresponding canonical
form (74) to be expressed through these operations, and ob-
serve how the canonical form transforms under these opera-
tions.

5.4.1 An Algebra for Multilinear Forms

Consider the set of local finite element spaces {Pj
K }mj=1 on a

cell K corresponding to a set of global finite element spaces

{V j
h }mj=1. The set of local basis functions {φK,j

i }n
j
K,m

i,j=1 span

a vector space PK and each function v in this vector space
may be expressed as a linear combination of the basis func-
tions, that is, the set of functions PK may be generated
from the basis functions through addition v + w and mul-
tiplication with scalars αv. Since v − w = v + (−1)w and
v/α = (1/α)v, we can also easily equip the vector space
with subtraction and division by scalars. Informally, we may
thus write

PK =
{
v : v =

∑
c(·)φK

(·)
}
. (89)

We next equip our vector space PK with multiplication
between elements of the vector space. We thus obtain an
algebra (a vector space with multiplication) of linear com-
binations of products of basis functions. Finally, we extend
our algebra PK by differentiation ∂/∂xi with respect to the
coordinate directions on K , to obtain

PK =
{

v : v =
∑

c(·)
∏ ∂ |(·)|φK

(·)
∂x(·)

}

, (90)

where (·) represents some multiindex.
To summarize, PK is the algebra of linear combinations

of products of basis functions or derivatives of basis func-
tions that is generated from the set of basis functions through
addition (+), subtraction (−), multiplication (·), including
multiplication with scalars, division by scalars (/), and dif-
ferentiation ∂/∂xi . We note that the algebra is closed under
these operations, that is, applying any of the operators to an
element v ∈ PK or a pair of elements v,w ∈ PK yields a
member of PK .

If the basis functions are vector-valued (or tensor-valued),
the algebra is instead generated from the set of scalar com-
ponents of the basis functions. Furthermore, we may intro-
duce linear algebra operators, such as inner products and
matrix–vector products, and differential operators, such as
the gradient, the divergence and rotation, by expressing
these compound operators in terms of the basic operators
(addition, subtraction, multiplication and differentiation).

We now note that the algebra PK corresponds precisely
to the canonical form (74) in that the element tensor AK

for any multilinear form on K that can be expressed as an
integral over K of an element v ∈ PK has an immediate
representation as a sum of element tensors of the canonical
form (74). We demonstrate this below.

5.4.2 Examples

As an example, consider the bilinear form

a(v,U) =
∫

�

v U dx, (91)

with corresponding element tensor canonical form

AK
i =

∫

K

φ
K,1
i1

φ
K,2
i2

dx. (92)

If we now let v = φ
K,1
i1

∈ PK and U = φ
K,2
i2

∈ PK , we note

that v U ∈ PK and we may thus express the element tensor
as an integral over K of an element in PK ,

AK
i =

∫

K

v U dx, (93)

which is close to the notation of (91). As another example,
consider the bilinear form

a(v,U) =
∫

�

∇v · ∇U + v U dx, (94)

with corresponding element tensor canonical form3

AK
i =

d∑

γ=1

∫

K

∂φ
K,1
i1

∂xγ

∂φ
K,2
i2

∂xγ

dx +
∫

K

φ
K,1
i1

φ
K,2
i2

dx. (95)

As before, we let v = φ
K,1
i1

∈ PK and U = φ
K,2
i2

∈ PK and

note that ∇v · ∇U + v U ∈ PK . It thus follows that the ele-
ment tensor AK for the bilinear form (94) may be expressed
as an integral over K of an element in PK ,

AK
i =

∫

K

∇v · ∇U + v U dx, (96)

which is close to the notation of (94). Thus, by a suitable de-
finition of v and U as local basis functions on K , the canon-
ical form (74) for the element tensor of a given multilinear
form may be expressed in a notation that is close to the no-
tation for the multilinear form itself.

5.4.3 Implementation by Operator-Overloading

It is now straightforward to implement the algebra PK in
any object-oriented language with support for operator over-
loading, such as Python or C++. We first implement a class
BasisFunction, representing (derivatives of) basis func-
tions of some given finite element space. Each Basis-
Function is associated with a particular finite element

3To be precise, the element tensor is the sum of two element tensors,
each written in the canonical form (74) with a suitable definition of
multiindices ι, κ and δ.
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space and different BasisFunctions may be associated
with different finite element spaces. Products of scalars and
(derivatives of) basis functions are represented by the class
Product, which may be implemented as a list of Basis-
Functions. Sums of such products are represented by the
class Sum, which may be implemented as a list of Prod-
ucts. We then define an operator for differentiation of ba-
sis functions and overload the operators addition, subtrac-
tion and multiplication, to generate the algebra of Basis-
Functions, Products and Sums, and note that any com-
bination of such operators and objects ultimately yields an
object of class Sum. In particular, any object of class Ba-
sisFunction or Product may be cast to an object of
class Sum.

By associating with each object one or more indices, im-
plemented by a class Index, an object of class Product
automatically represents a tensor expressed in the canonical
form (74). Finally, we note that we may introduce compound
operators such as grad, div, rot, dot etc. by expressing
these operators in terms of the basic operators.

Thus, if v and U are objects of class BasisFunction,
the integrand of the bilinear form (94) may be given as the
string

dot(grad(v), grad(U)) + v*U. (97)

In Table 5 we saw a similar example of how the bilinear
form for Poisson’s equation is specified in the language of
the FEniCS Form Compiler FFC. Further examples will be
given below in Sect. 9.2 and Sect. 10.

6 Automating the Assembly of the Discrete System

In Sect. 3, we reduced the task of automatically generating
the discrete system F(U) = 0 for a given nonlinear varia-
tional problem a(U ;v) = L(v) to the automatic assembly
of the tensor A that represents a given multilinear form a

in a given finite element basis. By Algorithm 2, this process
may be automated by automating first the computation of
the element tensor AK , which we discussed in the previ-
ous section, and then automating the addition of the element
tensor AK into the global tensor A, which is the topic of the
current section.

6.1 Implementing the Local-to-Global Mapping

With {ιjK }rj=1 the local-to-global mappings for a set of dis-

crete function spaces, {V j
h }rj=1, we evaluate for each j the

local-to-global mapping ι
j
K on the set of local node numbers

{1,2, . . . , n
j
K }, thus obtaining for each j a tuple

ι
j
K([1, n

j
K ]) = (ι

j
K(1), ι

j
K(2), . . . , ι

j
K(n

j
K)). (98)

Table 14 A C++ implementation of the mapping from local to global
node numbers for continuous linear Lagrange finite elements on tetra-
hedra. One node is associated with each vertex of a local cell and the
local node number for each of the four nodes is mapped to the global
number of the associated vertex

void nodemap(int nodes[], const Cell& cell,
const Mesh& mesh)
{
nodes[0] = cell.vertexID(0);
nodes[1] = cell.vertexID(1);
nodes[2] = cell.vertexID(2);
nodes[3] = cell.vertexID(3);

}

The entries of the element tensor AK may then be added to
the global tensor A by an optimized low-level library call4

that takes as input the two tensors A and AK and the set of
tuples (arrays) that determine how each dimension of AK

should be distributed onto the global tensor A. Compare
Fig. 4 with the two tuples given by (ι1K(1), ι1K(2), ι1K(3)) and
(ι2K(1), ι2K(2), ι2K(3)) respectively.

Now, to compute the set of tuples {ιjK([1, n
j
K ])}rj=1, we

may consider implementing for each j a function that takes
as input the current cell K and returns the corresponding tu-
ple ι

j
K([1, nK ]). Since the local-to-global mapping may look

very different for different function spaces, in particular for
different degree Lagrange elements, a different implementa-
tion is needed for each different function space. Another op-
tion is to implement a general purpose function that handles
a range of function spaces, but this quickly becomes ineffi-
cient. From the example implementations given in Table 14
and Table 15 for continuous linear and quadratic Lagrange
finite elements on tetrahedra, it is further clear that if the
local-to-global mappings are implemented individually for
each different function space, the mappings can be imple-
mented very efficiently, with minimal need for arithmetic or
branching.

6.2 Generating the Local-to-Global Mapping

We thus seek a way to automatically generate the code for
the local-to-global mapping from a simple description of
the distribution of nodes on the mesh. As before, we re-
strict our attention to elements with nodes given by point
evaluation. In that case, each node can be associated with
a geometric entity, such as a vertex, an edge, a face or a
cell. More generally, we may order the geometric entities by
their topological dimension to make the description inde-
pendent of dimension-specific notation (compare [76]); for
a two-dimensional triangular mesh, we may refer to a (topo-
logically two-dimensional) triangle as a cell, whereas for

4If PETSc [6–8] is used as the linear algebra backend, such a library
call is available with the call VecSetValues() for a rank one tensor
(a vector) and MatSetValues() for a rank two tensor (a matrix).
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Table 15 A C++ implementation of the mapping from local to global
node numbers for continuous quadratic Lagrange finite elements on
tetrahedra. One node is associated with each vertex and also each edge
of a local cell. As for linear Lagrange elements, local vertex nodes
are mapped to the global number of the associated vertex, and the
remaining six edge nodes are given global numbers by adding to the
global edge number an offset given by the total number of vertices in
the mesh

void nodemap(int nodes[], const Cell& cell,
const Mesh& mesh)
{
nodes[0] = cell.vertexID(0);
nodes[1] = cell.vertexID(1);
nodes[2] = cell.vertexID(2);
nodes[3] = cell.vertexID(3);
int offset = mesh.numVertices();
nodes[4] = offset + cell.edgeID(0);
nodes[5] = offset + cell.edgeID(1);
nodes[6] = offset + cell.edgeID(2);
nodes[7] = offset + cell.edgeID(3);
nodes[8] = offset + cell.edgeID(4);
nodes[9] = offset + cell.edgeID(5);

}

a three-dimensional tetrahedral mesh, we would refer to a
(topologically two-dimensional) triangle as a face. We may
thus for each topological dimension list the nodes associ-
ated with the geometric entities within that dimension. More
specifically, we may list for each topological dimension and
each geometric entity within that dimension a tuple of nodes
associated with that geometric entity. This approach is used
by the FInite element Automatic Tabulator FIAT [78–80].

As an example, consider the local-to-global mapping for
the linear tetrahedral element of Table 14. Each cell has four
nodes, one associated with each vertex. We may then de-
scribe the nodes by specifying for each geometric entity of
dimension zero (the vertices) a tuple containing one local
node number, as demonstrated in Table 16. Note that we may
specify the nodes for a discontinuous Lagrange finite ele-
ment on a tetrahedron similarly by associating all for nodes
with topological dimension three, that is, with the cell itself,
so that no nodes are shared between neighboring cells.

As a further illustration, we may describe the nodes for
the quadratic tetrahedral element of Table 15 by associating
the first four nodes with topological dimension zero (ver-
tices) and the remaining six nodes with topological dimen-
sion one (edges), as demonstrated in Table 17.

Finally, we present in Table 18 the specification of the
nodes for fifth-degree Lagrange finite elements on tetra-
hedra. Since there are now multiple nodes associated with
some entities, the ordering of nodes becomes important. In
particular, two neighboring tetrahedra sharing a common
edge (face) must agree on the global node numbering of
edge (face) nodes. This can be accomplished by checking
the orientation of geometric entities with respect to some

Table 16 Specifying the nodes for continuous linear Lagrange finite
elements on tetrahedra

d = 0 (1) – (2) – (3) – (4)

Table 17 Specifying the nodes for continuous quadratic Lagrange fi-
nite elements on tetrahedra

d = 0 (1) – (2) – (3) – (4)

d = 1 (5) – (6) – (7) – (8) – (9) – (10)

Table 18 Specifying the nodes for continuous fifth-degree Lagrange
finite elements on tetrahedra

d = 0 (1) – (2) – (3) – (4)

d = 1 (5,6,7,8) – (9,10,11,12) – (13,14,15,16) –

(17,18,19,20) – (21,22,23,24) – (25,26,27,28)

d = 2 (29,30,31,32,33,34) – (35,36,37,38,39,40) –

(41,42,43,44,45,46) – (47,48,49,50,51,52)

d = 3 (53,54,55,56)

given convention.5 For each edge, there are two possible
orientations and for each face of a tetrahedron, there are
six possible orientations. In Table 19, we present the local-
to-global mapping for continuous fifth-degree Lagrange fi-
nite elements, generated automatically from the description
of Table 18 by the FEniCS Form Compiler FFC [81, 82, 94,
95].

We may thus think of the local-to-global mapping as
a function that takes as input the current cell K (cell)
together with the mesh T (mesh) and generates a tuple
(nodes) that maps the local node numbers on K to global
node numbers. For finite elements with nodes given by point
evaluation, we may similarly generate a function that inter-
polates any given function to the current cell K by evaluat-
ing it at the nodes.

7 Optimizations

As we saw in Sect. 5, the (affine) tensor contraction repre-
sentation of the element tensor for Poisson’s equation may
significantly reduce the operation count in the computation
of the element tensor. This is true for a wide range of mul-
tilinear forms, in particular test cases 1–4 presented in Ta-
bles 10–13.

In some cases however, it may be more efficient to com-
pute the element tensor by quadrature, either using the direct
approach of Sect. 5.1 or by a tensor contraction represen-
tation of the quadrature evaluation as in Sect. 5.3. Which
approach is more efficient depends on the multilinear form
and the function spaces on which it is defined. In particu-
lar, the relative efficiency of a quadrature-based approach
increases as the number of coefficients in the multilinear

5For an example of such a convention, see [67] or [95].
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Table 19 A C++ implementation (excerpt) of the mapping from lo-
cal to global node numbers for continuous fifth-degree Lagrange finite
elements on tetrahedra. One node is associated with each vertex, four

nodes with each edge, six nodes with each face and four nodes with
the tetrahedron itself

void nodemap(int nodes[], const Cell& cell, const Mesh& mesh)
{
static unsigned int edge_reordering[2][4] = {{0, 1, 2, 3}, {3, 2, 1, 0}};
static unsigned int face_reordering[6][6] = {{0, 1, 2, 3, 4, 5},

{0, 3, 5, 1, 4, 2},
{5, 3, 0, 4, 1, 2},
{2, 1, 0, 4, 3, 5},
{2, 4, 5, 1, 3, 0},
{5, 4, 2, 3, 1, 0}};

nodes[0] = cell.vertexID(0);
nodes[1] = cell.vertexID(1);
nodes[2] = cell.vertexID(2);
nodes[3] = cell.vertexID(3);
int alignment = cell.edgeAlignment(0);
int offset = mesh.numVertices();
nodes[4] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][0];
nodes[5] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][1];
nodes[6] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][2];
nodes[7] = offset + 4*cell.edgeID(0) + edge_reordering[alignment][3];
alignment = cell.edgeAlignment(1);
nodes[8] = offset + 4*cell.edgeID(1) + edge_reordering[alignment][0];
nodes[9] = offset + 4*cell.edgeID(1) + edge_reordering[alignment][1];
nodes[10] = offset + 4*cell.edgeID(1) + edge_reordering[alignment][2];
nodes[11] = offset + 4*cell.edgeID(1) + edge_reordering[alignment][3];
...
alignment = cell.faceAlignment(0);
offset = offset + 4*mesh.numEdges();
nodes[28] = offset + 6*cell.faceID(0) + face_reordering[alignment][0];
nodes[29] = offset + 6*cell.faceID(0) + face_reordering[alignment][1];
nodes[30] = offset + 6*cell.faceID(0) + face_reordering[alignment][2];
nodes[31] = offset + 6*cell.faceID(0) + face_reordering[alignment][3];
nodes[32] = offset + 6*cell.faceID(0) + face_reordering[alignment][4];
nodes[33] = offset + 6*cell.faceID(0) + face_reordering[alignment][5];
...
offset = offset + 6*mesh.numFaces();
nodes[52] = offset + 4*cell.id() + 0;
nodes[53] = offset + 4*cell.id() + 1;
nodes[54] = offset + 4*cell.id() + 2;
nodes[55] = offset + 4*cell.id() + 3;

}

form increases, since then the rank of the reference tensor
increases. On the other hand, the relative efficiency of the
(affine) tensor contraction representation increases when the
polynomial degree of the basis functions and thus the num-
ber of quadrature points increases. See [81] for a more de-
tailed account.

7.1 Tensor Contractions as Matrix–Vector Products

As demonstrated above, the representation of the element
tensor AK as a tensor contraction AK = A0 : GK may be
generated automatically from a given multilinear form. To
evaluate the element tensor AK , it thus remains to evaluate

the tensor contraction. A simple approach would be to iterate
over the entries {AK

i }i∈IK
of AK and for each entry AK

i

compute the value of the entry by summing over the set of
secondary indices as outlined in Algorithm 3.

Algorithm 3 AK = ComputeElementTensor()

for i ∈ IK

AK
i = 0

for α ∈ A
AK

i = AK
i + A0

iαGα
K

end for
end for
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Examining Algorithm 3, we note that by an appropri-
ate ordering of the entries in AK , A0 and GK , one may
rephrase the tensor contraction as a matrix–vector product
and call an optimized library routine6 for the computation
of the matrix–vector product.

To see how to write the tensor contraction as a matrix–
vector product, we let {ij }|IK |

j=1 be an enumeration of the set

of primary multiindices IK and let {αj }|A|
j=1 be an enumera-

tion of the set of secondary multiindices A. As an example,
for the computation of the 6 × 6 element tensor for Pois-
son’s equation with quadratic elements on triangles, we may
enumerate the primary and secondary multiindices by

{ij }|IK |
j=1 = {(1,1), (1,2), . . . , (1,6), (2,1), . . . , (6,6)},

(99)

{αj }|A|
j=1 = {(1,1), (1,2), (2,1), (2,2)}.

By similarly enumerating the 36 entries of the 6×6 element
tensor AK and the four entries of the 2 × 2 geometry ten-
sor GK , one may define two vectors aK ∈ R

36 and gK ∈ R
4

corresponding to the two tensors AK and GK respectively.
In general, the element tensor AK and the geometry ten-

sor GK may thus be flattened to create the corresponding
vectors aK ↔ AK and gK ↔ GK , defined by

aK = (AK
i1 ,A

K
i2 , . . . ,A

K

i|IK |)

,

(100)

gK = (Gα1

K ,Gα2

K , . . . ,Gα|A|
K )
.

Similarly, we define the |IK | × |A| matrix Ā0 by

Ā0
jk = A0

ij αk , j = 1,2, . . . , |IK |, k = 1,2, . . . , |A|. (101)

Since now

aK
j = AK

ij
=

∑

α∈A
A0

ij α
Gα

K =
|A|∑

k=1

A0
ij αkG

αk

K

=
|A|∑

k=1

Ā0
jk(gK)k, (102)

it follows that the tensor contraction AK = A0 : GK corre-
sponds to the matrix–vector product

aK = Ā0gK. (103)

As noted earlier, the element tensor AK may generally
be expressed as a sum of tensor contractions, rather than as
a single tensor contraction, that is,

AK =
∑

k

A0,k : GK,k. (104)

6Such a library call is available with the standard level 2 BLAS [16]
routine DGEMV, with optimized implementations provided for differ-
ent architectures by ATLAS [116–118].

In that case, we may still compute the (flattened) element
tensor AK by a single matrix–vector product,

aK =
∑

k

Ā0,kgK,k = [Ā0,1 Ā0,2 · · ·]
⎡

⎢
⎣

gK,1

gK,2
...

⎤

⎥
⎦

= Ā0gK. (105)

Having thus phrased the general tensor contraction (104)
as a matrix–vector product, we note that by grouping the
cells of the mesh T into subsets, one may compute the set of
element tensors for all cells in a subset by one matrix–matrix
product (corresponding to a level 3 BLAS call) instead of
by a sequence of matrix–vector products (each correspond-
ing to a level 2 BLAS call), which will typically lead to
improved floating-point performance. This is possible since
the (flattened) reference tensor Ā0 remains constant over the
mesh. Thus, if {Kk}k ⊂ T is a subset of the cells in the mesh,
we have

[aK1 aK2 · · ·] = [Ā0gK1 Ā0gK2 . . .]
= Ā0[gK1 gK2 . . .]. (106)

The optimal size of each subset is problem and architecture
dependent. Since the geometry tensor may sometimes con-
tain a large number of entries, the size of the subset may be
limited by the available memory.

7.2 Finding an Optimized Computation

Although the techniques discussed in the previous section
may often lead to good floating-point performance, they do
not take full advantage of the fact that the reference tensor
is generated automatically. In [84] and later in [85], it was
noted that by knowing the size and structure of the reference
tensor at compile-time, one may generate very efficient code
for the computation of the reference tensor.

Letting gK ∈ R
|A| be the vector obtained by flattening the

geometry tensor GK as above, we note that each entry AK
i

of the element tensor AK is given by the inner product

AK
i = a0

i · gK, (107)

where a0
i is the vector defined by

a0
i = (A0

iα1,A
0
iα2 , . . . ,A

0
iα|A|)


. (108)

To optimize the evaluation of the element tensor, we look
for dependencies between the vectors {a0

i }i∈IK
and use the

dependencies to reduce the operation count. There are many
such dependencies to explore. Below, we consider collinear-
ity and closeness in Hamming distance between pairs of vec-
tors a0

i and a0
i′ .
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7.2.1 Collinearity

We first consider the case when two vectors a0
i and a0

i′ are
collinear, that is,

a0
i′ = αa0

i , (109)

for some nonzero α ∈ R. If a0
i and a0

i′ are collinear, it follows
that

AK
i′ = a0

i′ · gK = (αa0
i ) · gK = αAK

i . (110)

We may thus compute the entry AK
i′ in a single multiplica-

tion, if the entry AK
i has already been computed.

7.2.2 Closeness in Hamming Distance

Another possibility is to look for closeness between pairs of
vectors a0

i and a0
i′ in Hamming distance (see [27]), which

is defined as the number entries in which two vectors differ.
If the Hamming distance between a0

i and a0
i′ is ρ, then the

entry A0
i′ may be computed from the entry A0

i in at most ρ

multiply–add pairs. To see this, we assume that a0
i and a0

i′
differ only in the first ρ entries. It then follows that

AK
i′ = a0

i′ · gK = a0
i · gK +

ρ∑

k=1

(A0
i′αk − A0

iαk )G
αk

K

= AK
i +

ρ∑

k=1

(A0
i′αk − A0

iαk )G
αk

K , (111)

where we note that the vector (A0
i′α1 − A0

iα1,A
0
i′α2 −

A0
iα2, . . . ,A

0
i′αρ − A0

iαρ )

 may be precomputed at compile-

time. We note that the maximum Hamming distance be-
tween a0

i and a0
i′ is ρ = |A|, that is, the length of the vectors,

which is also the cost for the direct computation of an entry
by the inner product (107). We also note that if a0

i = a0
i′ and

consequently AK
i = AK

i′ , then the Hamming distance and
the cost of obtaining AK

i′ from AK
i are both zero.

7.2.3 Complexity-Reducing Relations

In [85], dependencies between pairs of vectors, such as
collinearity and closeness in Hamming distance, that can
be used to reduce the operation count in computing one en-
try from another, are referred to as complexity-reducing re-
lations. In general, one may define for any pair of vectors
a0
i and a0

i′ the complexity-reducing relation ρ(a0
i , a

0
i′) ≤ |A|

as the minimum of all complexity reducing relations found
between a0

i and a0
i′ . Thus, if we look for collinearity and

closeness in Hamming distance, we may say that ρ(a0
i , a

0
i′)

is in general given by the Hamming distance between a0
i

and a0
i′ unless the two vectors are collinear, in which case

ρ(a0
i , a

0
i′) ≤ 1.

7.2.4 Finding a Minimum Spanning Tree

Given the set of vectors {a0
i }i∈IK

and a complexity-reducing
relation ρ, the problem is now to find an optimized compu-
tation of the element tensor AK by systematically exploring
the complexity-reducing relation ρ. In [85], it was found
that this problem has a simple solution. By constructing a
weighted undirected graph G = (V ,E) with vertices given
by the vectors {a0

i }i∈IK
and the weight at each edge given

by the value of the complexity-reducing relation ρ evalu-
ated at the pair of end-points, one may find an optimized
(but not necessarily optimal) evaluation of the element ten-
sor by computing the minimum spanning tree7 G′ = (V ,E′)
for the graph G.

The minimum spanning tree directly provides an algo-
rithm for the evaluation of the element tensor AK . If one
first computes the entry of AK corresponding to the root
vertex of the minimum spanning tree, which may be done
in |A| multiply–add pairs, the remaining entries may then be
computed by traversing the tree (following the edges), either
breadth-first or depth-first, and at each vertex computing the
corresponding entry of AK from the parent vertex at a cost
given by the weight of the connecting edge. The total cost
of computing the element tensor AK is thus given by

|A| + |E′|, (112)

where |E′| denotes the weight of the minimum spanning
tree. As we shall see, computing the minimum spanning tree
may significantly reduce the operation count, compared to
the straightforward approach of Algorithm 3 for which the
operation count is given by |IK | |A|.

7.2.5 A Concrete Example

To demonstrate these ideas, we compute the minimum span-
ning tree for the computation of the 36 entries of the 6×6 el-
ement tensor for Poisson’s equation with quadratic elements
on triangles and obtain a reduction in the operation count
from a total of |IK | |A| = 36 × 4 = 144 multiply–add pairs
to less than 17 multiply–add pairs. Since there are 36 entries
in the element tensor, this means that we are be able to com-
pute the element tensor in less than one operation per entry
(ignoring the cost of computing the geometry tensor).

7A spanning tree for a graph G = (V ,E) is any connected acyclic
subgraph (V ,E′) of (V ,E), that is, each vertex in V is connected
to an edge in E′ ⊂ E and there are no cycles. The (generally non-
unique) minimum spanning tree of a weighted graph G is a spanning
tree G′ = (V ,E′) that minimizes the sum of edge weights for E′. The
minimum spanning tree may be computed using standard algorithms
such as Kruskal’s and Prim’s algorithms, see [27].
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As we saw above in Sect. 5.2, the rank four reference
tensor is A0 is given by

A0
iα =

∫

K0

∂�1
i1

∂Xα1

∂�2
i2

∂Xα2

dX ∀i ∈ IK, ∀α ∈A, (113)

where now IK = [1,6]2 and A = [1,2]2. To compute the
62 × 22 = 144 entries of the reference tensor, we evaluate
the set of integrals (113) for the basis defined in (57). In
Table 20, we give the corresponding set of (scaled) vectors
{a0

i }i∈IK
displayed as a 6 × 6 matrix of vectors with rows

corresponding to the first component i1 of the multiindex i

and columns corresponding to the second component i2 of
the multiindex i. Note that the entries in Table 20 have been
scaled with a factor 6 for ease of notation (corresponding
to the bilinear form a(v,U) = 6

∫
�

∇v · ∇U dx). Thus, the
entries of the reference tensor are given by A0

1111 = A0
1112 =

A0
1121 = A0

1122 = 3/6 = 1/2, A0
1211 = 1/6, A0

1212 = 0, etc.
Before proceeding to compute the minimum spanning

tree for the 36 vectors in Table 20, we note that the ele-
ment tensor AK for Poisson’s equation is symmetric, and as
a consequence we only need to compute 21 of the 36 entries
of the element tensor. The remaining 15 entries are given
by symmetry. Furthermore, since the geometry tensor GK is
symmetric (see Table 11), it follows that

AK
i = a0

i · gK = A0
i11G

11
K + A0

i12G
12
K + A0

i21G
21
K + A0

i22G
22
K

= A0
i11G

11
K + (A0

i12 + A0
i21)G

12
K + A0

i22G
22
K = ā0

i · ḡK,

(114)

where

ā0
i = (A0

i11,A
0
i12 + A0

i21,A
0
i22)


,
(115)

ḡK = (G11
K ,G12

K ,G22
K )
.

As a consequence, each of the 36 entries of the element ten-
sor AK may be obtained in at most 3 multiply–add pairs, and
since only 21 of the entries need to be computed, the total
operation count is directly reduced from 144 to 21×3 = 63.

The set of symmetry-reduced vectors {ā0
11, ā

0
12, . . . , ā

0
66}

are given in Table 21. We immediately note a number of
complexity-reducing relations between the vectors. Entries
ā0

12 = (1,1,0)
, ā0
16 = (−4,−4,0)
, ā0

26 = (−4,−4,0)

and ā0

45 = (−8,−8,0)
 are collinear, entries ā0
44 = (8,8,8)


and ā0
45 = (−8,−8,0)
 are close in Hamming distance8 etc.

To systematically explore these dependencies, we form a
weighted graph G = (V ,E) and compute a minimum span-
ning tree. We let the vertices V be the set of symmetry-
reduced vectors, V = {ā0

11, ā
0
12, . . . , ā

0
66}, and form the set

8We use an extended concept of Hamming distance by allowing an
optional negation of vectors (which is cheap to compute).

of edges E by adding between each pair of vertices an
edge with weight given by the minimum of all complexity-
reducing relations between the two vertices. The resulting
minimum spanning tree is shown in Fig. 6. We note that the
total edge weight of the minimum spanning tree is 14. This
means that once the value of the entry in the element ten-
sor corresponding to the root vertex is known, the remaining
entries may be computed in at most 14 multiply–add pairs.
Adding the 3 multiply–add pairs needed to compute the root
entry, we thus find that all 36 entries of the element tensor
AK may be computed in at most 17 multiply–add pairs.

An optimized algorithm for the computation of the el-
ement tensor AK may then be found by starting at the root
vertex and computing the remaining entries by traversing the
minimum spanning tree, as demonstrated in Algorithm 4.
Note that there are several ways to traverse the tree. In par-
ticular, it is possible to pick any vertex as the root vertex and
start from there. Furthermore, there are many ways to tra-
verse the tree given the root vertex. Algorithm 4 is generated
by traversing the tree breadth-first, starting at the root vertex
ā0

44 = (8,8,8)
. Finally, we note that the operation count
may be further reduced by not counting multiplications with
zeros and ones.

7.2.6 Extensions

By use of symmetry and relations between subsets of the
reference tensor A0 we have seen that it is possible to sig-
nificantly reduce the operation count for the computation of
the tensor contraction AK = A0 : GK . We have here only
discussed the use of binary relations (collinearity and Ham-
ming distance) but further reductions may be made by con-
sidering ternary relations, such as coplanarity, and higher-
arity relations between the vectors.

8 Automation and Software Engineering

In this section, we comment briefly on some topics of soft-
ware engineering relevant to the automation of the finite el-
ement method. A number of books and papers have been
written on the subject of software engineering for the im-
plementation of finite element methods, see for example [1,
88, 89, 100, 101]. In particular these works point out the
importance of object-oriented, or concept-oriented, design
in developing mathematical software; since the mathemat-
ical concepts have already been hammered out, it may be
advantageous to reuse these concepts in the system design,
thus providing abstractions for important concepts, includ-
ing Vector, Matrix, Mesh, Function, Bilinear-
Form, LinearForm, FiniteElement etc.

We shall not repeat these arguments, but instead point
out a couple of issues that might be less obvious. In partic-
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Table 20 The 6 × 6 × 2 × 2 reference tensor A0 for Poisson’s equation with quadratic elements on triangles, displayed here as the set of
vectors {a0

i }i∈IK

1 2 3 4 5 6

1 (3,3,3,3)
 (1,0,1,0)
 (0,1,0,1)
 (0,0,0,0)
 −(0,4,0,4)
 −(4,0,4,0)


2 (1,1,0,0)
 (3,0,0,0)
 −(0,1,0,0)
, (0,4,0,0)
 (0,0,0,0)
 −(4,4,0,0)


3 (0,0,1,1)
 −(0,0,1,0)
 (0,0,0,3)
 (0,0,4,0)
 −(0,0,4,4)
 (0,0,0,0)


4 (0,0,0,0)
 (0,0,4,0)
 (0,4,0,0)
 (8,4,4,8)
 −(8,4,4,0)
 −(0,4,4,8)


5 −(0,0,4,4)
 (0,0,0,0)
 −(0,4,0,4)
 −(8,4,4,0)
 (8,4,4,8)
 (0,4,4,0)


6 −(4,4,0,0)
 −(4,0,4,0)
 (0,0,0,0)
 −(0,4,4,8)
 (0,4,4,0)
 (8,4,4,8)


Table 21 The upper triangular part of the symmetry-reduced reference tensor A0 for Poisson’s equation with quadratic elements on triangles

1 2 3 4 5 6

1 (3,6,3)
 (1,1,0)
 (0,1,1)
 (0,0,0)
 −(0,4,4)
 −(4,4,0)


2 (3,0,0)
 −(0,1,0)
, (0,4,0)
 (0,0,0)
 −(4,4,0)


3 (0,0,3)
 (0,4,0)
 −(0,4,4)
 (0,0,0)


4 (8,8,8)
 −(8,8,0)
 −(0,8,8)


5 (8,8,8)
 (0,8,0)


6 (8,8,8)


Algorithm 4 An optimized (but not optimal) algorithm for computing the upper triangular part of the element tensor AK

for Poisson’s equation with quadratic elements on triangles in 17 multiply–add pairs

AK
44 = A0

4411G
11
K + (A0

4412 + A0
4421)G

12
K + A0

4422G
22
K AK

13 = −AK
23 + 1GK

22

AK
46 = −AK

44 + 8G11
K AK

14 = 0AK
23

AK
45 = −AK

44 + 8G22
K AK

34 = AK
24

AK
55 = AK

44 AK
15 = −4AK

13

AK
66 = AK

44 AK
25 = AK

14

AK
56 = −AK

45 − 8G11
K AK

22 = AK
14 + 3GK

11

AK
12 = − 1

8 AK
45 AK

33 = AK
14 + 3GK

22

AK
16 = 1

2 AK
45 AK

36 = AK
14

AK
23 = −AK

12 + 1G11
K AK

35 = AK
15

AK
24 = −AK

16 − 4G11
K AK

11 = AK
22 + 6GK

12 + 3GK
22

AK
26 = AK

16

ular, a straightforward implementation of all the mathemat-
ical concepts discussed in the previous sections may be dif-
ficult or even impossible to attain. Therefore, we will argue
that a level of automation is needed also in the implemen-
tation or realization of an automation of the finite element
method, that is, the automatic generation of computer code
for the specific mathematical concepts involved in the spec-
ification of any particular finite element method and differ-
ential equation, as illustrated in Fig. 7.

We also point out that the automation of the finite ele-
ment method is not only a software engineering problem. In
addition to identifying and implementing the proper mathe-
matical concepts, one must develop new mathematical tools
and ideas that make it possible for the automating system to
realize the full generality of the finite element method. In ad-

dition, new insights are needed to build an efficient automat-
ing system that can compete with or outperform hand-coded
specialized systems for any given input.

8.1 Code Generation

As in all types of engineering, software for scientific com-
puting must try to find a suitable trade-off between general-
ity and efficiency; a software system that is general in nature,
that is, it accepts a wide range of inputs, is often less efficient
than another software system that performs the same job on
a more limited set of inputs. As a result, most codes used
by practitioners for the solution of differential equations are
very specific, often specialized to a specific method for a
specific differential equation.
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Fig. 6 The minimum spanning
tree for the optimized
computation of the upper
triangular part (Table 21) of the
element tensor for Poisson’s
equation with quadratic
elements on triangles. Solid
(blue) lines indicate zero
Hamming distance (equality),
dashed (blue) lines indicate a
small but nonzero Hamming
distance and dotted (red) lines
indicate collinearity

Fig. 7 A machine (computer program) that automates the finite ele-
ment method by automatically generating a particular machine (com-
puter program) for a suitable subset of the given input data

However, by using a compiler approach, it is possible to
combine generality and efficiency without loss of generality
and without loss of efficiency. Instead of developing a po-
tentially inefficient general-purpose program that accepts a
wide range of inputs, a suitable subset of the input is given to
an optimizing compiler that generates a specialized program

that takes a more limited set of inputs. In particular, one may
automatically generate a specialized simulation code for any
given method and differential equation.

An important task is to identify a suitable subset of the
input to move to a precompilation phase. In the case of a
system automating the solution of differential equations by
the finite element method, a suitable subset of input includes
the variational problem (29) and the choice of approximat-
ing finite element spaces. We thus develop a domain-specific
compiler that accepts as input a variational problem and a set
of finite elements and generates optimized low-level code (in
some general-purpose language such as C or C++). Since
the compiler may thus work on only a small family of inputs
(multilinear forms), domain-specific knowledge allows the
compiler to generate very efficient code, using the optimiza-
tions discussed in the previous section. We return to this in
more detail below in Sect. 9.2 when we discuss the FEniCS
Form Compiler FFC.

We note that to limit the complexity of the automating
system, it is important to identify a minimal set of code to
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be generated at a precompilation stage, and implement the
remaining code in a general-purpose language. It makes less
sense to generate the code for administrative tasks such as
reading and writing data to file, special algorithms like adap-
tive mesh refinement etc. These tasks can be implemented as
a library in a general-purpose language.

8.2 Just-In-Time Compilation

To make an automating system for the solution of differ-
ential equations truly useful, the generation and precompi-
lation of code according to the above discussion must also
be automated. Thus, a user should ultimately be presented
with a single user-interface and the code should automati-
cally and transparently be generated and compiled just-in-
time for a given problem specification.

Achieving just-in-time compilation of variational prob-
lems is challenging, not only to construct the exact mech-
anism by which code is generated, compiled and linked
back in at run-time, but also to reduce the precompilation
phase to a minimum so that the overhead of code generation
and compilation is acceptable. To compile and generate the
code for the evaluation of a multilinear form as discussed in
Sect. 5, we need to compute the tensor representation (80),
including the evaluation of the reference tensor. Even with
an optimized algorithm for the computation of the reference
tensor as discussed in [82], the computation of the refer-
ence tensor may be very costly, especially for high-order ele-
ments and complicated forms. To improve the situation, one
may consider caching previously computed reference ten-
sors (similarly to how LATEX generates and caches fonts in
different resolutions) and reuse previously computed refer-
ence tensors. As discussed in [82], a reference tensor may be
uniquely identified by a (short) string referred to as a signa-
ture. Thus, one may store reference tensors along with their
signatures to speed up the precomputation and allow run-
time just-in-time compilation of variational problems with
little overhead.

9 A Prototype Implementation (FEniCS)

An algorithm must be seen to be believed, and the best
way to learn what an algorithm is all about is to try it.

Donald E. Knuth
The Art of Computer Programming (1968)

The automation of the finite element method includes its
own realization, that is, a software system that implements
the algorithms discussed in Sects. 3–6. Such a system is pro-
vided by the FEniCS project [34, 65]. We present below
some of the key components of FEniCS, including FIAT,
FFC and DOLFIN, and point out how they relate to the var-
ious aspects of the automation of the finite element method.

In particular, the automatic tabulation of finite element basis
functions discussed in Sect. 4 is provided by FIAT [78–80],
the automatic evaluation of the element tensor as discussed
in Sect. 5 is provided by FFC [81, 82, 94, 95] and the auto-
matic assembly of the discrete system as discussed in Sect. 6
is provided by DOLFIN [61, 66, 67]. The FEniCS project
thus serves as a testbed for development of new ideas for
the automatic and efficient implementation of finite element
methods. At the same, it provides a reference implementa-
tion of these ideas.

FEniCS software is free software [53]. In particular, the
components of FEniCS are licensed under the GNU General
Public License [51].9 The source code is freely available on
the FEniCS web site [65] and the development is discussed
openly on public mailing lists.

9.1 FIAT

The FInite element Automatic Tabulator FIAT [79] was first
introduced in [78] and implements the ideas discussed above
in Sect. 4 for the automatic tabulation of finite element ba-
sis functions based on a linear algebraic representation of
function spaces and constraints.

FIAT provides functionality for defining finite element
function spaces as constrained subsets of polynomials on
the simplices in one, two and three space dimensions,
as well as a library of predefined finite elements, includ-
ing arbitrary degree Lagrange [18, 25], Hermite [18, 25],
Raviart–Thomas [107], Brezzi–Douglas–Marini [21] and
Nedelec [102] elements, as well as the (first degree) Crou-
zeix–Raviart element [29]. Furthermore, the plan is to
support Brezzi–Douglas–Fortin–Marini [20] and Arnold–
Winther [2] elements in future versions.

In addition to tabulating finite element nodal basis func-
tions (as linear combinations of a reference basis), FIAT
generates quadrature points of any given order on the refer-
ence simplex and provides functionality for efficient tabula-
tion of the basis functions and their derivatives at any given
set of points. In Fig. 8 and Fig. 9, we present some examples
of basis functions generated by FIAT.

Although FIAT is implemented in Python, the interpre-
tive overhead of Python compared to compiled languages is
small, since the operations involved may be phrased in terms
of standard linear algebra operations, such as the solution of
linear systems and singular value decomposition, see [80].
FIAT may thus make use of optimized Python linear algebra
libraries such Python Numeric [103]. Recently, a C++ ver-
sion of FIAT called FIAT++ has also been developed with
run-time bindings for Sundance [97–99].

9FIAT is licensed under the Lesser General Public License [52].
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Fig. 8 The first three basis
functions for a fifth-degree
Lagrange finite element on a
triangle, associated with the
three vertices of the triangle.
(Courtesy of Robert C. Kirby)

Fig. 9 A basis function
associated with an interior point
for a fifth-degree Lagrange finite
element on a triangle. (Courtesy
of Robert C. Kirby)

9.2 FFC

The FEniCS Form Compiler FFC [94], first introduced
in [81], automates the evaluation of multilinear forms as
outlined in Sect. 5 by automatically generating code for the
efficient computation of the element tensor corresponding
to a given multilinear form. FFC thus functions as domain-
specific compiler for multilinear forms, taking as input a set
of discrete function spaces together with a multilinear form
defined on these function spaces, and produces as output op-
timized low-level code, as illustrated in Fig. 10. In its sim-
plest form, FFC generates code in the form of a single C++
header file that can be included in a C++ program, but FFC

Fig. 10 The form compiler FFC takes as input a multilinear form to-
gether with a set of function spaces and generates optimized low-level
(C++) code for the evaluation of the associated element tensor

can also be used as a just-in-time compiler within a scripting
environment like Python, for seamless definition and evalu-
ation of multilinear forms.
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9.2.1 Form Language

The FFC form language is generated from a small set of
basic data types and operators that allow a user to define
a wide range of multilinear forms, in accordance with the
discussion of Sect. 5.4.3. As an illustration, we include be-
low the complete definition in the FFC form language of
the bilinear forms for the test cases considered above in Ta-
bles 10–13. We refer to the FFC user manual [95] for a de-
tailed discussion of the form language, but note here that
in addition to a set of standard operators, including the inner
product dot, the partial derivative D, the gradient grad, the
divergence div and the rotation rot, FFC supports Ein-
stein tensor-notation (Table 24) and user-defined operators
(operator epsilon in Table 25).

9.2.2 Implementation

The FFC form language is implemented in Python as a
collection of Python classes (including BasisFunction,
Function, FiniteElement etc.) and operators on the-
ses classes. Although FFC is implemented in Python, the
interpretive overhead of Python has been minimized by ju-
dicious use of optimized numerical libraries such as Python
Numeric [103]. The computationally most expensive part of
the compilation of a multilinear form is the precomputation
of the reference tensor. As demonstrated in [82], by suitably
pretabulating basis functions and their derivatives at a set of
quadrature points (using FIAT), the reference tensor can be
computed by assembling a set of outer products, which may
each be efficiently computed by a call to Python Numeric.

Currently, the only optimization FFC makes is to avoid
multiplications with any zeros of the reference tensor A0

when generating code for the tensor contraction AK = A0 :
GK . As part of the FEniCS project, an optimizing backend,
FErari (Finite Element Re-arrangement Algorithm to Re-
duce Instructions), is currently being developed. Ultimately,
FFC will call FErari at compile-time to find an optimized
computation of the tensor contraction, according to the dis-
cussion in Sect. 7.

9.2.3 Benchmark Results

As a demonstration of the efficiency of the code gener-
ated by FFC, we include in Table 26 a comparison taken
from [81] between a standard implementation, based on
computing the element tensor AK on each cell K by a loop
over quadrature points, with the code automatically gener-
ated by FFC, based on precomputing the reference tensor A0

and computing the element tensor AK by the tensor contrac-
tion AK = A0 : GK on each cell.

As seen in Table 26, the speedup ranges between one and
three orders of magnitude, with larger speedups for higher

degree elements. In Fig. 11 and Fig. 12, we also plot the
dependence of the speedup on the polynomial degree for test
cases 1 and 2 respectively.

It should be noted that the total work in a simulation also
includes the assembly of the local element tensors {AK }K∈T
into the global tensor A, solving the linear system, iterating
on the nonlinear problem etc. Therefore, the overall speedup
may be significantly less than the speedups reported in Ta-
ble 26. We note that if the computation of the local element
tensors normally accounts for a fraction θ ∈ (0,1) of the to-
tal run-time, then the overall speedup gained by a speedup
of size s > 1 for the computation of the element tensors will
be

1 <
1

1 − θ + θ/s
≤ 1

1 − θ
, (116)

which is significant only if θ is significant. As noted in [84],
θ may be significant in many cases, in particular for nonlin-
ear problems where a nonlinear system (or the action of a
linear operator) needs to be repeatedly reassembled as part
of an iterative method.

9.2.4 User Interfaces

FFC can be used either as a stand-alone compiler on the
command-line, or as a Python module from within a Python
script. In the first case, a multilinear form (or a pair of bi-
linear and linear forms) is entered in a text file with suf-
fix .form and then compiled by calling the command ffc
with the form file on the command-line.

By default, FFC generates C++ code for inclusion in a
DOLFIN C++ program (see Sect. 9.3 below) but FFC can
also compile code for other backends (by an appropriate
compiler flag), including the ASE (ANL SIDL Environ-
ment) format [87], XML format, and LATEX format (for in-
clusion of the tensor representation in reports and presenta-
tions). The format of the generated code is separated from
the parsing of forms and the generation of the tensor con-
traction, and new formats for alternative backends may be
added with little effort, see Fig. 13.

Alternatively, FFC can be used directly from within
Python as a Python module, allowing definition and com-
pilation of multilinear forms from within a Python script. If
used together with the recently developed Python interface
of DOLFIN (PyDOLFIN), FFC functions as a just-in-time
compiler for multilinear forms, allowing forms to be defined
and evaluated from within Python.

9.3 DOLFIN

DOLFIN [61, 66, 67], Dynamic Object-oriented Library for
FINite element computation, functions as a general pro-
gramming interface to DOLFIN and provides a problem-
solving environment (PSE) for differential equations in the
form of a C++/Python class library.
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Table 22 The complete definition of the bilinear form a(v,U) = ∫
�

v U dx in the FFC form language (test case 1)

element = FiniteElement("Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)

a = v*U*dx

Table 23 The complete definition of the bilinear form a(v,U) = ∫
�

∇v · ∇U dx in the FFC form language (test case 2)

element = FiniteElement("Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)

a = dot(grad(v), grad(U))*dx

Table 24 The complete definition of the bilinear form a(v,U) = ∫
�

v · (w · ∇)U dx in the FFC form language (test case 3)

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)
w = Function(element)

a = v[i]*w[j]*D(U[i],j)*dx

Table 25 The complete definition of the bilinear form a(v,U) = ∫
�

ε(v) : ε(U)dx in the FFC form language (test case 4)

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)

def epsilon(v):
return 0.5*(grad(v) + transp(grad(v)))

a = dot(epsilon(v), epsilon(U))*dx

Table 26 Speedups for test cases 1–4 (Tables 10–13 and Tables 22–25) in two and three space dimensions

Form q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8

Mass 2D 12 31 50 78 108 147 183 232

Mass 3D 21 81 189 355 616 881 1442 1475

Poisson 2D 8 29 56 86 129 144 189 236

Poisson 3D 9 56 143 259 427 341 285 356

Navier–Stokes 2D 32 33 53 37 – – – –

Navier–Stokes 3D 77 100 61 42 – – – –

Elasticity 2D 10 43 67 97 – – – –

Elasticity 3D 14 87 103 134 – – – –

Initially, DOLFIN was developed as a self-contained (but
modularized) C++ code for finite element simulation, pro-
viding basic functionality for the definition and automatic
evaluation of multilinear forms, assembly, linear algebra,

mesh data structures and adaptive mesh refinement, but as
a consequence of the development of focused components
for each of these tasks as part of the FEniCS project, a
large part (but not all) of the functionality of DOLFIN has
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Fig. 11 Benchmark results for
test case 1, the mass matrix,
specified in FFC by a =
v*U*dx

Fig. 12 Benchmark results for
test case 2, Poisson’s equation,
specified in FFC by a =
dot(grad(v),
grad(U))*dx

been delegated to these other components while maintaining

a consistent programming interface. Thus, DOLFIN relies

on FIAT for the automatic tabulation of finite element basis

functions and on FFC for the automatic evaluation of mul-

tilinear forms. We discuss below some of the key aspects of

DOLFIN and its role as a component of the FEniCS project.
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Fig. 13 Component diagram
for FFC

9.3.1 Automatic Assembly of the Discrete System

DOLFIN implements the automatic assembly of the discrete
system associated with a given variational problem as out-
lined in Sect. 6. DOLFIN iterates over the cells {K}K∈T of
a given mesh T and calls the code generated by FFC on
each cell K to evaluate the element tensor AK . FFC also
generates the code for the local-to-global mapping which
DOLFIN calls to obtain a rule for the addition of each ele-
ment tensor AK to the global tensor A.

Since FFC generates the code for both the evaluation
of the element tensor and for the local-to-global mapping,
DOLFIN needs to know very little about the finite element
method. It only follows the instructions generated by FFC
and operates abstractly on the level of Algorithm 2.

9.3.2 Meshes

DOLFIN provides basic data structures and algorithms for
simplicial meshes in two and three space dimensions (trian-
gular and tetrahedral meshes) in the form of a class Mesh,
including adaptive mesh refinement. As part of PETSc [6–
8] and the FEniCS project, the new component Sieve [76,
77] is currently being developed. Sieve generalizes the mesh
concept and provides powerful abstractions for dimension-
independent operations on mesh entities and will function as
a backend for the mesh data structures in DOLFIN.

9.3.3 Linear Algebra

Previously, DOLFIN provided a stand-alone basic linear al-
gebra library in the form of a class Matrix, a class Vec-
tor and a collection of iterative and direct solvers. This im-
plementation has recently been replaced by a set of simple
wrappers for the sparse linear algebra library provided by
PETSc [6–8]. As a consequence, DOLFIN is able to pro-
vide sophisticated high-performance parallel linear algebra
with an easy-to-use object-oriented interface suitable for fi-
nite element computation.

9.3.4 ODE Solvers

DOLFIN also provides a set of general order mono-adaptive
and multi-adaptive [47, 90, 91, 93, 96] ODE-solvers, au-
tomating the solution of ordinary differential equations. Al-
though the ODE-solvers may be used in connection with the
automated assembly of discrete systems, DOLFIN does cur-
rently not provide any level of automation for the discretiza-
tion of time-dependent PDEs. Future versions of DOLFIN
(and FFC) will allow time-dependent PDEs to be defined di-
rectly in the FFC form language with automatic discretiza-
tion and adaptive time-integration.

9.3.5 PDE Solvers

In addition to providing a class library of basic tools that au-
tomate the implementation of adaptive finite element meth-
ods, DOLFIN provides a collection of ready-made solvers
for a number of standard equations. The current version of
DOLFIN provides solvers for Poisson’s equation, the heat
equation, the convection–diffusion equation, linear elastic-
ity, updated large-deformation elasticity, the Stokes equa-
tions and the incompressible Navier–Stokes equations.

9.3.6 Pre- and Post-Processing

DOLFIN relies on interaction with external tools for pre-
processing (mesh generation) and post-processing (visual-
ization). A number of output formats are provided for visu-
alization, including DOLFIN XML [67], VTK [86] (for use
in ParaView [112] or MayaVi [106]), Octave [35], MAT-
LAB [115], OpenDX [104], GiD [26] and Tecplot [114].
DOLFIN may also be easily extended with new output for-
mats.

9.3.7 User Interfaces

DOLFIN can be accessed either as a C++ class library
or as a Python module, with the Python interface gener-
ated semi-automatically from the C++ class library using
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SWIG [12, 13]. In both cases, the user is presented with a
simple and consistent but powerful programming interface.

As discussed in Sect. 9.3.5, DOLFIN provides a set of
ready-made solvers for standard differential equations. In
the simplest case, a user thus only needs to supply a mesh,
a set of boundary conditions and any parameters and vari-
able coefficients to solve a differential equation, by calling
one of the existing solvers. For other differential equations,
a solver may be implemented with minimal effort using the
set of tools provided by the DOLFIN class library, including
variational problems, meshes and linear algebra as discussed
above.

9.4 Related Components

We also mention two other projects developed as part of
FEniCS. One of these is Puffin [62, 63], a light-weight ed-
ucational implementation of the basic functionality of FEn-
iCS for Octave/MATLAB, including automatic assembly of
the linear system from a given variational problem. Puffin
has been used with great success in introductory undergrad-
uate mathematics courses and is accompanied by a set of ex-
ercises [75] developed as part of the Body and Soul reform
project [44–46, 48] for applied mathematics education.

The other project is the Ko mechanical simulator [73].
Ko uses DOLFIN as the computational backend and pro-
vides a specialized interface to the simulation of mechani-
cal systems, including large-deformation elasticity and col-
lision detection. Ko provides two different modes of simula-
tion: either a simple mass–spring model solved as a system
of ODEs, or a large-deformation updated elasticity model
solved as a system of time-dependent PDEs. As a con-
sequence of the efficient assembly provided by DOLFIN,
based on efficient code being generated by FFC, the over-
head of the more complex PDE model compared to the sim-
ple ODE model is relatively small.

10 Examples

In this section, we present a number of examples chosen to
illustrate various aspects of the implementation of finite el-
ement methods for a number of standard partial differen-
tial equations with the FEniCS framework. We already saw
in Sect. 2 the specification of the variational problem for
Poisson’s equation in the FFC form language. The exam-
ples below include static linear elasticity, two different for-
mulations for the Stokes equations and the time-dependent
convection–diffusion equations with the velocity field given
by the solution of the Stokes equations. For simplicity, we
consider only linear problems but note that the framework
allows for implementation of methods for general nonlinear
problems. See in particular [58–60].

10.1 Static Linear Elasticity

As a first example, consider the equation of static linear
elasticity [18] for the displacement u = u(x) of an elastic
shape � ∈ R

d ,

−∇ · σ(u) = f in �,

u = u0 on �0 ⊂ ∂�, (117)

σ(u)n̂ = 0 on ∂� \ �0,

where n̂ denotes a unit vector normal to the boundary ∂�.
The stress tensor σ is given by

σ(v) = 2με(v) + λ trace(ε(v))I, (118)

where I is the d × d identity matrix and where the strain
tensor ε is given by

ε(v) = 1

2

(∇v + (∇v)

)
, (119)

that is, εij (v) = 1
2 (

∂vi

∂xj
+ ∂vj

∂xi
) for i, j = 1, . . . , d . The Lamé

constants μ and λ are given by

μ = E

2(1 + ν)
, λ = Eν

(1 + ν)(1 − 2ν)
, (120)

with E the Young’s modulus of elasticity and ν the Poisson
ratio, see [119]. In the example below, we take E = 10 and
ν = 0.3.

To obtain the discrete variational problem corresponding
to (117), we multiply with a test function v in a suitable
discrete test space V̂h and integrate by parts to obtain
∫

�

∇v : σ(U)dx =
∫

�

v · f dx ∀v ∈ V̂h. (121)

The corresponding formulation in the FFC form language
is shown in Table 27 for an approximation with linear La-
grange elements on tetrahedra. Note that by defining the op-
erators σ and ε, it is possible to obtain a very compact no-
tation that corresponds well with the mathematical notation
of (121).

Computing the solution of the variational problem for a
domain � given by a gear, we obtain the solution in Fig. 14.
The gear is clamped at two of its ends and twisted 30 de-
grees, as specified by a suitable choice of Dirichlet boundary
conditions on �0.

10.2 The Stokes Equations

Next, we consider the Stokes equations,

−	u + ∇p = f in �,

∇ · u = 0 in �, (122)

u = u0 on ∂�,
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Table 27 The complete specification of the variational problem (121) for static linear elasticity in the FFC form language

element = FiniteElement("Vector Lagrange", "tetrahedron", 1)

v = BasisFunction(element)
U = BasisFunction(element)
f = Function(element)

E = 10.0
nu = 0.3

mu = E / (2*(1 + nu))
lmbda = E*nu / ((1 + nu)*(1 - 2*nu))

def epsilon(v):
return 0.5*(grad(v) + transp(grad(v)))

def sigma(v):
return 2*mu*epsilon(v) + lmbda*mult(trace(epsilon(v)), Identity(len(v)))

a = dot(grad(v), sigma(U))*dx
L = dot(v, f)*dx

for the velocity field u = u(x) and the pressure p = p(x) in
a highly viscous medium. By multiplying the two equations
with a pair of test functions (v, q) chosen from a suitable
discrete test space V̂h = V̂ u

h × V̂
p
h , we obtain the discrete

variational problem

∫

�

∇v : ∇U − (∇ · v)P + q∇ · U dx =
∫

�

v · f dx

∀(v, q) ∈ V̂h, (123)

for the discrete approximate solution (U,P ) ∈ Vh = V u
h ×

V
p
h . To guarantee the existence of a unique solution of

the discrete variational problem (123), the discrete func-
tion spaces V̂h and Vh must be chosen appropriately. The
Babuška–Brezzi [3, 19] inf–sup condition gives a precise
condition for the selection of the approximating spaces.

10.2.1 Taylor–Hood Elements

One way to fulfill the Babuška–Brezzi condition is to use
different order approximations for the velocity and the pres-
sure, such as degree q polynomials for the velocity and de-
gree q −1 for the pressure, commonly referred to as Taylor–
Hood elements, see [17, 18]. The resulting mixed formula-
tion may be specified in the FFC form language by defin-
ing a Taylor–Hood element as the direct sum of a degree q

vector-valued Lagrange element and a degree q − 1 scalar
Lagrange element, as shown in Table 28. Figure 16 shows
the velocity field for the flow around a two-dimensional dol-
phin computed with a P2–P1 Taylor-Hood approximation.

10.2.2 A Stabilized Equal-Order Formulation

Alternatively, the Babuška–Brezzi condition may be cir-
cumvented by an appropriate modification (stabilization) of
the variational problem (123). In general, an appropriate
modification may be obtained by a Galerkin/least-squares
(GLS) stabilization, that is, by modifying the test func-
tion w = (v, q) according to w → w + δAw, where A is
the operator of the differential equation and δ = δ(x) is
suitable stabilization parameter. Here, we a choose simple
pressure-stabilization obtained by modifying the test func-
tion w = (v, q) according to

(v, q) → (v, q) + (δ∇q,0). (124)

The stabilization (124) is sometimes referred to as a pressure-
stabilizing/Petrov-Galerkin (PSPG) method, see [54, 69].
Note that the stabilization (124) may also be viewed as a
reduced GLS stabilization.

We thus obtain the following modified variational prob-
lem: Find (U,P ) ∈ Vh such that
∫

�

∇v : ∇U − (∇ · v)P + q∇ · U + δ∇q · ∇P dx

=
∫

�

(v + δ∇q) · f dx ∀(v, q) ∈ V̂h. (125)

Table 29 shows the stabilized equal-order method in the FFC
form language, with the stabilization parameter given by

δ = βh2, (126)

where β = 0.2 and h = h(x) is the local mesh size (cell di-
ameter).
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Fig. 14 The original domain �

of the gear (above) and the
twisted gear (below), obtained
by displacing � at each point
x ∈ � by the value of the
solution u of (117) at the point x

In Fig. 15, we illustrate the importance of stabilizing the
equal-order method by plotting the solution for the pressure
with and without stabilization. Without stabilization, the so-
lution oscillates heavily. Note that the scaling is chosen dif-
ferently in the two images, with the oscillations scaled down
by a factor two in the unstabilized solution. The situation
without stabilization is thus even worse than what the figure
indicates.

10.3 Convection–Diffusion

As a final example, we compute the temperature u = u(x, t)

around the dolphin (Fig. 17) from the previous example by
solving the time-dependent convection–diffusion equations,

u̇ + b · ∇u − ∇ · (c∇u) = f in � × (0, T ],
u = u∂ on ∂� × (0, T ], (127)
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Table 28 The complete specification of the variational problem (123) for the Stokes equations with P2–P1 Taylor–Hood elements.

P2 = FiniteElement("Vector Lagrange", "triangle", 2)
P1 = FiniteElement("Lagrange", "triangle", 1)
TH = P2 + P1

(v, q) = BasisFunctions(TH)
(U, P) = BasisFunctions(TH)

f = Function(P2)

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U))*dx
L = dot(v, f)*dx

Table 29 The complete specification of the variational problem (125) for the Stokes equations with an equal-order P1–P1 stabilized method.

vector = FiniteElement("Vector Lagrange", "triangle", 1)
scalar = FiniteElement("Lagrange", "triangle", 1)
system = vector + scalar

(v, q) = BasisFunctions(system)
(U, P) = BasisFunctions(system)

f = Function(vector)
h = Function(scalar)

d = 0.2*h*h

a = (dot(grad(v), grad(U)) - div(v)*P + q*div(U) + d*dot(grad(q), grad(P)))*dx
L = dot(v + mult(d, grad(q)), f)*dx

u = u0 at � × {0},
with velocity field b = b(x) obtained by solving the Stokes
equations.

We discretize (127) with the cG(1)cG(1) method, that is,
with continuous piecewise linear functions in space and time
(omitting stabilization for simplicity). The interval [0, T ]
is partitioned into a set of time intervals 0 = t0 < t1 <

· · · < tn−1 < tn < · · · < tM = T and on each time interval
(tn−1, tn], we pose the variational problem
∫ tn

tn−1

∫

�

(v, U̇) + v b · ∇U + c∇v · ∇U dx dt

=
∫ tn

tn−1

∫

�

v f dx dt ∀v ∈ V̂h, (128)

with V̂h the space of all continuous piecewise linear func-
tions in space. Note that the cG(1) method in time uses
piecewise constant test functions, see [43, 49, 70, 71, 90].
As a consequence, we obtain the following variational prob-
lem for Un ∈ Vh = V̂h, the piecewise linear in space solution
at time t = tn,

∫

�

v
Un − Un−1

kn

+ v b · ∇(Un + Un−1)/2

+ c∇v · ∇(Un + Un−1)/2 dx

=
∫ tn

tn−1

∫

�

v f dx dt ∀v ∈ V̂h, (129)

where kn = tn − tn−1 is the size of the time step. We thus
obtain a variational problem of the form

a(v,Un) = L(v) ∀v ∈ V̂h, (130)

where

a(v,Un) =
∫

�

v Un dx + kn

2
(v b · ∇Un + c∇v · ∇Un)dx,

L(v) =
∫

�

v Un−1 dx

(131)

− kn

2
(v b · ∇Un−1 + c∇v · ∇Un−1)dx

+
∫ tn

tn−1

∫

�

v f dx dt.

The corresponding specification in the FFC form lan-
guage is presented in Table 30, where for simplicity we ap-
proximate the right-hand side with its value at the right end-
point.
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Fig. 15 The pressure for the
flow around a two-dimensional
dolphin, obtained by solving the
Stokes equations (122) by an
unstabilized P1–P1
approximation (above) and a
stabilized P1–P1 approximation
(below)

11 Outlook: The Automation of CMM

The automation of the finite element method, as described
above, constitutes an important step towards the Automa-
tion of Computational Mathematical Modeling (ACMM), as
outlined in [92]. In this context, the automation of the finite
element method amounts to the automation of discretiza-

tion, that is, the automatic translation of a given continu-
ous model to a system of discrete equations. Other key steps
include the automation of discrete solution, the automation
of error control, the automation of modeling and the au-
tomation of optimization. We discuss these steps below and
also make some comments concerning automation in gen-
eral.
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Table 30 The complete specification of the variational problem (130) for cG(1) time-stepping of the convection–diffusion equation

scalar = FiniteElement("Lagrange", "triangle", 1)
vector = FiniteElement("Vector Lagrange", "triangle", 2)

v = BasisFunction(scalar)
U1 = BasisFunction(scalar)
U0 = Function(scalar)
b = Function(vector)
f = Function(scalar)

c = 0.005
k = 0.05

a = v*U1*dx + 0.5*k*(v*dot(b, grad(U1)) + c*dot(grad(v), grad(U1)))*dx
L = v*U0*dx - 0.5*k*(v*dot(b, grad(U0)) + c*dot(grad(v), grad(U0)))*dx + k*v*f*dx

Fig. 16 The velocity field for the flow around a two-dimensional dol-
phin, obtained by solving the Stokes equations (122) by a P2–P1 Tay-
lor-Hood approximation

11.1 The Principles of Automation

An automatic system carries out a well-defined task without
intervention from the person or system actuating the auto-
matic process. The task of the automating system may be
formulated as follows: For given input satisfying a fixed set
of conditions (the input conditions), produce output satisfy-
ing a given set of conditions (the output conditions).

An automatic process is defined by an algorithm, con-
sisting of a sequential list of instructions (like a computer
program). In automated manufacturing, each step of the al-
gorithm operates on and transforms physical material. Cor-
respondingly, an algorithm for the Automation of CMM op-
erates on digits and consists of the automated transformation
of digital information.

Fig. 17 The temperature around a hot dolphin in surrounding cold
water with a hot inflow, obtained by solving the convection–diffusion
equation with the velocity field obtained from a solution of the Stokes
equations with a P2–P1 Taylor–Hood approximation

A key problem of automation is the design of a feed-back
control, allowing the given output conditions to be satis-
fied under variable input and external conditions, ideally at
a minimal cost. Feed-back control is realized through mea-
surement, evaluation and action; a quantity relating to the
given set of conditions to be satisfied by the output is mea-
sured, the measured quantity is evaluated to determine if the
output conditions are satisfied or if an adjustment is neces-
sary, in which case some action is taken to make the nec-
essary adjustments. In the context of an algorithm for feed-
back control, we refer to the evaluation of the set of output
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Fig. 18 The Automation of Computational Mathematical Modeling

conditions as the stopping criterion, and to the action as the
modification strategy.

A key step in the automation of a complex process is
modularization, that is, the hierarchical organization of the
complex process into components or sub processes. Each
sub process may then itself be automated, including feed-
back control. We may also express this as abstraction, that
is, the distinction between the properties of a component (its
purpose) and the internal workings of the component (its re-
alization).

Modularization (or abstraction) is central in all engineer-
ing and makes it possible to build complex systems by con-
necting together components or subsystems without concern
for the internal workings of each subsystem. The exact parti-
tion of a system into components is not unique. Thus, there
are many ways to partition a system into components. In
particular, there are many ways to design a system for the
Automation of Computational Mathematical Modeling.

We thus identify the following basic principles of au-
tomation: algorithms, feed-back control, and modulariza-
tion.

11.2 Computational Mathematical Modeling

In automated manufacturing, the task of the automating sys-
tem is to produce a certain product (the output) from a given
piece of material (the input), with the product satisfying
some measure of quality (the output conditions).

For the Automation of CMM, the input is a given model
of the form

A(u) = f, (132)

for the solution u on a given domain � × (0, T ] in space-
time, where A is a given differential operator and where f is
a given source term. The output is a discrete solution U ≈ u

satisfying some measure of quality. Typically, the measure
of quality is given in the form of a tolerance TOL > 0 for the
size of the error e = U − u in a suitable norm, ‖e‖ ≤ TOL,
or alternatively, the error in some given functional M ,

|M(U) − M(u)| ≤ TOL. (133)

In addition to controlling the quality of the computed so-
lution, one may also want to determine a parameter that

optimizes some given cost functional depending on the
computed solution (optimization). We refer to the over-
all process, including optimization, as the Automation of
CMM.

The key problem for the Automation of CMM is thus the
design of a feed-back control for the automatic construc-
tion of a discrete solution U , satisfying the output condition
(133) at minimal cost. The design of this feed-back control
is based on the solution of an associated dual problem, con-
necting the size of the residual R(U) = A(U) − f of the
computed discrete solution to the size of the error e, and
thus to the output condition (133).

11.3 An Agenda for the Automation of CMM

Following our previous discussion on modularization as a
basic principle of automation, we identify the following key
steps in the Automation of CMM:

(i) The automation of discretization, that is, the automatic
translation of a continuous model of the form (132) to
a system of discrete equations;

(ii) The automation of discrete solution, that is, the auto-
matic solution of the system of discrete equations ob-
tained from the automatic discretization of (132);

(iii) The automation of error control, that is, the automatic
selection of an appropriate resolution of the discrete
model to produce a discrete solution satisfying the
given accuracy requirement with minimal work;

(iv) The automation of modeling, that is, the automatic se-
lection of the model (132), either by constructing a
model from a given set of data, or by constructing from
a given model a reduced model for the variation of the
solution on resolvable scales;

(v) The automation of optimization, that is, the automatic
selection of a parameter in the model (132) to optimize
a given goal functional.

In Fig. 19, we demonstrate how (i)–(iv) connect to solve
the overall task of the Automation of CMM (excluding opti-
mization) in accordance with Fig. 18. We discuss (i)–(v) in
some detail below. In all cases, feed-back control, or adap-
tivity, plays a key role.

11.4 The Automation of Discretization

The automation of discretization amounts to automatically
generating a system of discrete equations for the degrees of
freedom of a discrete solution U approximating the solu-
tion u of the given model (132), or alternatively, the solu-
tion u ∈ V of a corresponding variational problem

a(u;v) = L(v) ∀v ∈ V̂ , (134)
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Fig. 19 A modularized view of
the Automation of
Computational Mathematical
Modeling

where as before a : V × V̂ → R is a semilinear form which
is linear in its second argument and L : V̂ → R is a lin-
ear form. As we saw in Sect. 3, this process may be auto-
mated by the finite element method, by replacing the func-
tion spaces (V̂ ,V ) with a suitable pair (V̂h,Vh) of discrete
function spaces, and an approach to its automation was dis-
cussed in Sects. 4–6. As we shall discuss further below, the
pair of discrete function spaces may be automatically cho-
sen by feed-back control to compute the discrete solution U

both reliably and efficiently.

11.5 The Automation of Discrete Solution

Depending on the model (132) and the method used to auto-
matically discretize the model, the resulting system of dis-
crete equations may require more or less work to solve. Typ-
ically, the discrete system is solved by some iterative method
such as the conjugate gradient method (CG) or GMRES, in
combination with an appropriate choice of preconditioner,
see for example [30, 110].

The resolution of the discretization of (132) may be cho-
sen automatically by feed-back control from the computed
solution, with the target of minimizing the computational
work while satisfying a given accuracy requirement. As a
consequence, see for example [90], one obtains an accuracy
requirement on the solution of the system of discrete equa-
tions. Thus, the system of discrete equations does not need
to be solved to within machine precision, but only to within
some discrete tolerance tol > 0 for some error in a func-
tional of the solution of the discrete system. We shall not
pursue this question further here, but remark that the feed-
back control from the computed solution to the iterative al-
gorithm for the solution of the system of discrete equations

is often weak, and the problem of designing efficient adap-
tive iterative algorithms for the system of discrete equations
remains open.

11.6 The Automation of Error Control

As stated above, the overall task is to produce a solution
of (132) that satisfies a given accuracy requirement with
minimal work. This includes an aspect of reliability, that
is, the error in an output quantity of interest depending on
the computed solution should be less than a given tolerance,
and an aspect of efficiency, that is, the solution should be
computed with minimal work. Ideally, an algorithm for the
solution of (132) should thus have the following properties:
Given a tolerance TOL > 0 and a functional M , the algo-
rithm shall produce a discrete solution U approximating the
exact solution u of (132), such that

(A) |M(U) − M(u)| ≤ TOL;
(B) the computational cost of obtaining the approximation

U is minimal.

Conditions (A) and (B) can be satisfied by an adaptive al-
gorithm, with the construction of the discrete representa-
tion (V̂h,Vh) based on feed-back from the computed solu-
tion.

An adaptive algorithm typically involves a stopping cri-
terion, indicating that the size of the error is less than the
given tolerance, and a modification strategy to be applied if
the stopping criterion is not satisfied. Often, the stopping cri-
terion and the modification strategy are based on an a pos-
teriori error estimate E ≥ |M(U) − M(u)|, estimating the
error in terms of the residual R(U) = A(U) − f and the
solution ϕ of a dual problem connecting to the stability of
(132).
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11.6.1 The Dual Problem

The dual problem of (132) for the given output functional M

is given by

A′∗ϕ = ψ, (135)

on � × [0, T ), where A′∗ denotes the adjoint10 of the
Fréchet derivative A′ of A evaluated at a suitable mean value
of the exact solution u and the computed solution U ,

A′ =
∫ 1

0
A′ (sU + (1 − s)u) ds, (136)

and where ψ is the Riesz representer of a similar mean value
of the Fréchet derivative M ′ of M ,

(v,ψ) = M ′v ∀v ∈ V. (137)

By the dual problem (135), we directly obtain the error rep-
resentation

M(U) − M(u) = M ′(U − u) = (U − u,ψ)

= (U − u,A′∗ϕ) = (A′(U − u),ϕ)

= (A(U) − A(u),ϕ) = (A(U) − f,ϕ)

= (R(U),ϕ). (138)

Noting now that if the solution U is computed by a Galerkin
method and thus (R(U), v) = 0 for any v ∈ V̂h, we obtain

M(U) − M(u) = (R(U),ϕ − πhϕ), (139)

where πhϕ is a suitable approximation of ϕ in V̂h. One may
now proceed to estimate the error M(U) − M(u) in various
ways, either by estimating the interpolation error πhϕ − ϕ

or by directly evaluating the quantity (R(U),ϕ − πhϕ).
The residual R(U) and the dual solution ϕ give precise
information about the influence of the discrete representa-
tion (V̂h,Vh) on the size of the error, which can be used in an
adaptive feed-back control to choose a suitable discrete rep-
resentation for the given output quantity M of interest and
the given tolerance TOL for the error, see [15, 42, 50, 90].

11.6.2 The Weak Dual Problem

We may estimate the error similarly for the variational prob-
lem (134) by considering the following weak (variational)
dual problem: Find ϕ ∈ V̂ such that

a′∗(U,u; v,ϕ) = M ′(U,u;v) ∀v ∈ V, (140)

10The adjoint is defined by (Av,w) = (v,A∗w) for all v,w ∈ V such
that v = w = 0 at t = 0 and t = T .

where a′∗ denotes the adjoint of the bilinear form a′, given
as above by an appropriate mean value of the Fréchet deriv-
ative of the semilinear form a. We now obtain the error rep-
resentation

M(U) − M(u) = M ′(U,u; U − u)

= a′∗(U,u; U − u,ϕ) = a′(U,u; ϕ,U − u)

= a(U ; ϕ) − a(u; ϕ)

= a(U ; ϕ) − L(ϕ). (141)

As before, we use the Galerkin orthogonality to subtract
a(U ;πϕ) − L(πϕ) = 0 for some πhϕ ∈ V̂h ⊂ V̂ and obtain

M(U) − M(u) = a(U ;ϕ − πϕ) − L(ϕ − πϕ). (142)

To automate the process of error control, we thus need
to automatically generate and solve the dual problem (135)
or (140) from a given primal problem (132) or (134).

11.7 The Automation of Modeling

The automation of modeling concerns both the problem of
finding the parameters describing the model (132) from a
given set of data (inverse modeling), and the automatic con-
struction of a reduced model for the variation of the solu-
tion on resolvable scales (model reduction). We here discuss
briefly the automation of model reduction.

In situations where the solution u of (132) varies on
scales of different magnitudes, and these scales are not
localized in space and time, computation of the solution
may be very expensive, even with an adaptive method. To
make computation feasible, one may instead seek to com-
pute an average ū of the solution u of (132) on resolvable
scales. Typical examples include meteorological models for
weather prediction, with fast time scales on the range of sec-
onds and slow time scales on the range of years, or protein
folding represented by a molecular dynamics model, with
fast time scales on the range of femtoseconds and slow time
scales on the range of microseconds.

Model reduction typically involves extrapolation from re-
solvable scales, or the construction of a large-scale model
from local resolution of fine scales in time and space. In
both cases, a large-scale model

A(ū) = f̄ + ḡ(u), (143)

for the average ū is constructed from the given model (132)
with a suitable modeling term ḡ(u) ≈ A(ū) − Ā(u).

Replacing a given model with a computable reduced
model by taking averages in space and time is sometimes
referred to as subgrid modeling. Subgrid modeling has re-
ceived much attention in recent years, in particular for the
incompressible Navier–Stokes equations, where the sub-
grid modeling problem takes the form of determining the
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Reynolds stresses corresponding to ḡ. Many subgrid models
have been proposed for the averaged Navier–Stokes equa-
tions, but no clear answer has been given. Alternatively, the
subgrid model may take the form of a least-squares stabiliza-
tion, as suggested in [58–60]. In either case, the validity of a
proposed subgrid model may be verified computationally by
solving an appropriate dual problem and computing the rel-
evant residuals to obtain an error estimate for the modeling
error, see [74].

11.8 The Automation of Optimization

The automation of optimization relies on the automation of
(i)–(iv), with the solution of the primal problem (132) and
an associated dual problem being the key steps in the min-
imization of a given cost functional. In particular, the au-
tomation of optimization relies on the automatic generation
of the dual problem.

The optimization of a given cost functional J = J (u,p),
subject to the constraint (132), with p a function (the con-
trol variables) to be determined, can be formulated as the
problem of finding a stationary point of the associated La-
grangian,

L(u,p,ϕ) = J (u,p) + (A(u,p) − f (p),ϕ), (144)

which takes the form of a system of differential equations,
involving the primal and dual problems, as well as an equa-
tion expressing stationarity with respect to the control vari-
ables p,

A(u,p) = f (p),

(A′)∗(u,p)ϕ = −∂J /∂u, (145)

∂J /∂p = (∂f/∂p)∗ϕ − (∂A/∂p)∗ϕ.

It follows that the optimization problem may be solved by
the solution of a system of differential equations. Note that
the first equation is the given model (132), the second equa-
tion is the dual problem and the third equation gives a di-
rection for the update of the control variables. The automa-
tion of optimization thus relies on the automated solution of
both the primal problem (132) and the dual problem (135),
including the automatic generation of the dual problem.

12 Concluding Remarks

With the FEniCS project [65], we have the beginnings of
a working system automating (in part) the finite element
method, which is the first step towards the Automation of
Computational Mathematical Modeling, as outlined in [92].
As part of this work, a number of key components, FIAT,
FFC and DOLFIN, have been developed. These components

provide reference implementations of the algorithms dis-
cussed in Sects. 3–6.

As the current toolset, focused mainly on an automation
of the finite element method (the automation of discretiza-
tion), is becoming more mature, important new areas of re-
search and development emerge, including the remaining
key steps towards the Automation of CMM. In particular,
we plan to explore the possibility of automatically generat-
ing dual problems and error estimates in an effort to auto-
mate error control.
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