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Abstract

Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales
system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the d
time scales are localised to different components, corresponding to localisation in space for a PDE, effici
integration thus requires that we use different time steps for different components.

We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q) recently introduced in a
series of papers by the author. In these methods, the time step sequence is selected individually and ada
each component, based on an a posteriori error estimate of the global error.

The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations w
solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations m
to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff sy
To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODEs, in wh
explicit method is adaptively stabilised by a small number of small, stabilising time steps.
 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In earlier work [29,30], we have introduced the multi-adaptive Galerkin methods mcG(q) and mdG(q)
for ODEs of the type{

u̇(t)= f
(
u(t), t

)
, t ∈ (0, T ],

u(0) = u0,
(1)

whereu : [0, T ] → R
N is the solution to be computed,u0 ∈ R

N a given initial condition,T > 0 a given
final time, andf :RN × (0, T ] → R

N a given function that is Lipschitz-continuous inu and bounded
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URL: http://www.math.chalmers.se/~logg.

0168-9274/$30.00 2003 IMACS. Published by Elsevier B.V. All rights reserved.
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We use the termmulti-adaptivity to describe methods with individual time-stepping for the different
componentsui(t) of the solution vectoru(t) = (ui(t)), including (i) time step length, (ii) order, and
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(iii) quadrature, all chosen adaptively in a computational feed-back process.
Surprisingly, individual time-stepping for ODEs has received little attention in the large liter

on numerical methods for ODEs, see, e.g., [4,24,25,2,34]. For specific applications, such asn-
body problem, methods with individual time-stepping have been used, see, e.g., [31,1,5], but a
methodology has been lacking. For time-dependent PDEs, in particular for conservation laws of t
u̇+ f (u)x = 0, attempts have been made to construct methods with individual (locally varying in s
time steps. Flaherty et al. [22] have constructed a method based on the discontinuous Galerkin
combined with local explicit Euler time-stepping. A similar approach is taken in [6] where a m
based on the original work by Osher and Sanders [32] is presented for conservation laws in o
two space dimensions. Typically the time steps used are based on local CFL conditions rather th
estimates for the global error and the methods are low order in time (meaning� 2). We believe tha
our work on multi-adaptive Galerkin methods (including error estimation and arbitrary order me
presents a general methodology to individual time-stepping, which will result in efficient integrator
for ODEs and time-dependent PDEs.

The multi-adaptive methods are developed within the general framework of adaptive Galerkin m
based on piecewise polynomial approximation (finite element methods) for differential equ
including the continuous and discontinuous Galerkin methods cG(q) and dG(q), which we extend to
their multi-adaptive analogues mcG(q) and mdG(q). Earlier work on adaptive error control for the cG(q)
and dG(q) methods include [7,17,27,19,18,21]. See also [10,11,9,12–14], and [8] or [20] in par
for an overview of adaptive error control based on duality techniques. The approach to error analy
adaptivity presented in these references naturally carries over to the multi-adaptive methods.

1.1. The stiffness problem

The classical wisdom developed in the 1950s regarding stiff ODEs is that efficient integration re
implicit (A-stable) methods, at least outside transients where the time steps may be chosen lar
accuracy point of view. Using an explicit method (with a bounded stability region) the time steps
to be small at all times for stability reasons, in particular outside transients, and the advantage o
cost per time step for the explicit method is counter-balanced by the necessity of taking a large
of small time steps. As a result, the overall efficiency of an explicit method for a stiff ODE is small

We encounter the same problem when we try to use explicit fixed point iteration to solve the d
equations given by the multi-adaptive Galerkin methods mcG(q) and mdG(q). However, it turns out tha
if a sequence of large (unstable) time steps are accompanied by a suitable (small) number of sm
steps, a stiff system can be stabilised to allow integration with an effective time step much larger t
largest stable time step given by classical stability analysis. This idea of stabilising a stiff system
the inherent damping property of the stiff system itself was first developed in an automatic and a
setting in [16], and will be further explored in the full multi-adaptive setting. A similar approach is t
in recent independent work by Gear and Kevrekidis [3]. The relation to Runge–Kutta methods ba
Chebyshev polynomials discussed by Verwer in [26] should also be noted.
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Fig. 1. Individual partitions of the interval(0, T ] for different components. Elements between common synchronised time
are organised in time slabs. In this example, we haveN = 6 andM = 4.

1.2. Notation

The following notation is used in the discussion of the multi-adaptive Galerkin methods below
componentUi(t), i = 1, . . . ,N , of the approximate m(c/d)G(q) solution U(t) of (1) is a piecewise
polynomial on a partition of(0, T ] into Mi subintervals. Subintervalj for componenti is denoted by
Iij = (ti,j−1, tij ], and the length of the subinterval is given by the localtime stepkij = tij − ti,j−1. This is
illustrated in Fig. 1. On each subintervalIij ,Ui|Iij is a polynomial of degreeqij and we refer to(Iij ,Ui|Iij )
as anelement.

Furthermore, we shall assume that the interval(0, T ] is partitioned into blocks between certa
synchronised time levels 0= T0 < T1 < · · · < TM = T . We refer to the set of intervalsTn between two
synchronised time levelsTn−1 andTn as atime slab: Tn = {Iij : Tn−1 � ti,j−1 < tij � Tn}, and we denote
the length of a time slab byKn = Tn − Tn−1. The partition consisting of the entire collection of interv
is denoted byT = ⋃

Tn.

1.3. Outline

The outline of the paper is as follows: In Section 2, we formulate the multi-adaptive Galerkin me
mcG(q) and mdG(q). In Section 3, we discuss error control and adaptivity. In particular, we s
how to choose the individual time steps based on an a posteriori error estimate for the globa
In Section 4, we give a quick overview of an iterative method (based on fixed point iteration) f
system of nonlinear discrete equations that needs to be solved on each time slab, and in Sect
describe a technique that can be used to stabilise the explicit fixed point iterations for stiff pro
Finally, in Section 6, we present a number of numerical examples chosen to illustrate both the p
of multi-adaptivity and the use of explicit fixed point iteration (or explicit time-stepping) for
problems.
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2. Multi-adaptive Galerkin
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2.1. Multi-adaptive continuous Galerkin,mcG(q)

To give the definition of the mcG(q) method, we define thetrial spaceV and thetest spaceW as

V = {
v ∈ [

C
([0, T ])]N : vi |Iij ∈Pqij (Iij ), j = 1, . . . ,Mi, i = 1, . . . ,N

}
,

(2)
W = {

v: vi|Iij ∈Pqij−1(Iij ), j = 1, . . . ,Mi, i = 1, . . . ,N
}
,

wherePq(I ) denotes the linear space of polynomials of degreeq � 0 on the intervalI . In other words,
V is the space of continuous piecewise polynomials of degreeq = qi(t)= qij , t ∈ Iij on the partitionT ,
andW is the space of (in general discontinuous) piecewise polynomials of degreeq − 1 on the same
partition.

We define the mcG(q) method for (1) as follows: FindU ∈ V with U(0)= u0, such that
T∫

0

(
U̇ , v

)
dt =

T∫
0

(
f (U, ·), v)dt ∀v ∈W, (3)

where (·, ·) denotes the standard inner product inR
N . If now for each local intervalIij we take

vn = 0 whenn �= i andvi(t) = 0 whent /∈ Iij , we can rewrite the global problem (3) as a numbe
successive local problems for each component: Fori = 1, . . . ,N , j = 1, . . . ,Mi , find Ui|Iij ∈ Pqij (Iij )

with Ui(ti,j−1) given from the previous time interval, such that∫
Iij

U̇iv dt =
∫
Iij

fi(U, ·)v dt ∀v ∈Pqij−1(Iij ). (4)

We define theresidualR of the approximate solutionU to beR(U, t) = U̇ (t) − f (U(t), t). In terms
of the residual, we can rewrite (4) as

∫
Iij
Ri(U, ·)v dt = 0 for all v ∈ Pqij−1(Iij ), i.e., the residual is

orthogonal to the test space on every local interval. We refer to this as theGalerkin orthogonalityof the
mcG(q) method.

2.2. Multi-adaptive discontinuous Galerkin,mdG(q)

For the mdG(q) method, we define the trial and test spaces by

V =W = {
v: vi |Iij ∈Pqij (Iij ), j = 1, . . . ,Mi, i = 1, . . . ,N

}
, (5)

i.e., both trial and test functions are (in general discontinuous) piecewise polynomials of degrq =
qi(t)= qij , t ∈ Iij on the partitionT .

We define the mdG(q) method for (1) as follows, similar to the definition of the continuous meth
FindU ∈ V with U(0−)= u0, such that

N∑
i=1

Mi∑
j=1

[
[Ui]i,j−1v

(
t+i,j−1

) +
∫
Iij

U̇ivi dt

]
=

T∫
0

(
f (U, ·), v)dt ∀v ∈W, (6)

where[·] denotes the jump, i.e.,[v]ij = v(t+ij )− v(t−ij ).
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The mdG(q) method in local form, corresponding to (4), reads: Fori = 1, . . . ,N , j = 1, . . . ,Mi , find
Ui|Iij ∈Pqij (Iij ), such that

r
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e.
[Ui]i,j−1v(ti,j−1)+
∫
Iij

U̇iv dt =
∫
Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij ), (7)

where the initial condition is specified fori = 1, . . . ,N , by Ui(0−) = ui(0). In the same way as fo
the continuous method, we define the residualR of the approximate solutionU to be R(U, t) =
U̇ (t) − f (U(t), t), defined on the inner of every local intervalIij , and rewrite (7) in the form
[Ui]i,j−1v(ti,j−1)+

∫
Iij
Ri(U, ·)v dt = 0 for all v ∈Pqij (Iij ). We refer to this as the Galerkin orthogonal

of the mdG(q) method.

3. Error control and adaptivity

Our goal is to compute an approximationU(T ) of the exact solutionu(T ) of (1) at final timeT
within a given tolerance TOL> 0, using a minimal amount of computational work. This goal inclu
an aspect ofreliability (the error should be less than the tolerance) and an aspect ofefficiency(minimal
computational work). To measure the error we choose a norm, such as the Euclidean norm‖ · ‖ on R

N ,
or more generally some other quantity of interest.

We discuss below both a priori and a posteriori error estimates for the multi-adaptive Ga
methods, and the application of the a posteriori error estimates in multi-adaptive time-stepping.

3.1. A priori error estimates

Standard (duality-based) a priori error estimates show that the order for the ordinary Galerkin m
cG(q) and dG(q) is 2q and 2q+1, respectively. A generalisation of these estimates to the multi-ada
methods gives the same result. The multi-adaptive continuous Galerkin method mcG(q) is thus of order
2q, and the multi-adaptive discontinuous Galerkin method mdG(q) is of order 2q + 1.

3.2. A posteriori error estimates

A posteriori error analysis in the general framework of [8] relies on the concept of thedual problem.
The dual problem of the initial value problem (1) is the linearised backward problem given by{

−φ̇ = J ∗(u,U, ·)φ on [0, T ),
φ(T )= e(T )/

∥∥e(T )∥∥, (8)

where the JacobianJ is given byJ (u,U, ·) = ∫ 1
0

∂f

∂u
(su + (1 − s)U, ·)ds and ∗ denotes the transpos

We use the dual problem to represent the error in terms of the dual solutionφ and the residualR. For the
mcG(q) method the representation formula is given by

∥∥e(T )∥∥ =
T∫

0

(R,φ)dt, (9)
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∥∥e(T )∥∥ =
N∑
i=1

i∑
j=1

[Ui]i,j−1φi(ti,j−1)+
Iij

Ri(U, ·)φi dt. (10)

Using the Galerkin orthogonalities together with special interpolation estimates (see [29]), we
a posteriori error estimates of the form

∥∥e(T )∥∥ �
N∑
i=1

S
[qi ]
i max

[0,T ]
{
Ck

qi
i ri

}
, (11)

for the mcG(q) method, and

∥∥e(T )∥∥ �
N∑
i=1

S
[qi+1]
i max

[0,T ]
{
Ck

qi+1
i ri

}
, (12)

for the mdG(q) method, whereC is an interpolation constant,ri is a local measure of the residual, a
the individualstability factorsSi are given byS[qi ]

i = ∫ T

0 |φ(qi)

i |dt . Typically, the stability factors are o
moderate size for a stiff problem (and of unit size for a parabolic problem), which means that ac
computation is possible over long time intervals. Note that the Lipschitz constant, which is larg
stiff problem, is not present in these estimates.

The analysis can be extended to include alsocomputational errors, arising from solving the discret
equations using an iterative method, andquadrature errors, arising from evaluating the integrals in (
and (7) using quadrature.

3.3. Adaptivity

To achieve the goals stated at the beginning of this section, the adaptive algorithm chooses in
time steps for the different components based on the a posteriori error estimates. Using for ex
standardPID regulator from control theory, we choose the individual time steps for each compon
satisfy

SiCk
pij
ij rij = TOL/N, (13)

or, taking the logarithm withCi = log(TOL/(NSiC)),

pij logkij + logrij = Ci, (14)

with maximal time steps{kij }, following work by Söderlind and coworkers [23,35]. Here,pij = qij for
the mcG(q) method andpij = qij + 1 for the mdG(q) method.

To solve the dual problem (8), which is needed to compute the stability factors, it would see
we need to know the errore(T ), since this is used as an initial value for the dual problem. Howeve
know from experience that the stability factors are quite insensitive to the choice of initial data f
dual problem. (A motivation of this for parabolic problems is given in [15].) Thus in practice, a ran
(and normalised) value is chosen as initial data for the dual problem. Another approach is to t
initial value for the dual problem to beφ(T )= (0, . . . ,0,1,0, . . . ,0), i.e., a vector of zeros except for
single component which is of size one. This gives an estimate for a chosen component of the e
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other choices of data for the dual problem, other functionals of the error can be controlled. In either case,
the stability factors are computed using quadrature from the computed dual solution.
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The adaptive algorithm can be expressed as follows: Given a tolerance TOL> 0, make a preliminary
estimate for the stability factors and then

(i) Solve the primal problem with time steps based on (13);
(ii) Solve the dual problem and compute the stability factors;

(iii) Compute an error boundE based on (9) or (10);
(iv) If E � TOL then stop; if not go back to (i).

Note that we use the error representations (9) and (10) to obtain sharp error estimates. On the oth
the error estimates (11) and (12) are used to determine the adaptive time step sequences.

To limit the computational work, it is desirable that only a few iterations in the adaptive algorith
needed. In the simplest case, the error estimate will stay below the given tolerance on the first
Otherwise, the algorithm will try to get below the tolerance the second time. It is also possible t
the number of times the dual problem is solved. It should also be noted that to obtain an error est
a timet = t̄ , different from the final timeT , the dual problem has to be solved backwards also from
t̄ . This may be necessary in some cases if the stability factors do not grow monotonically as fu
of the final timeT , but for many problems the stability factors grow withT , indicating accumulation o
errors.

Our experience is that automatic computation based on this adaptive strategy is both reliable (t
estimates are quite close to the actual error) and efficient (the additional cost for solving the dual p
is quite small). See [28] for a discussion on this topic.

4. Iterative methods for the nonlinear system

The nonlinear discrete algebraic equations given by the mcG(q) and mdG(q) methods presented i
Section 2 (including numerical quadrature) to be solved on every local intervalIij take the form

ξijm = ξij0 + kij

qij∑
n=0

w
[qij ]
mn fi

(
U

(
τ−1
ij

(
s
[qij ]
n

))
, τ−1

ij

(
s
[qij ]
n

))
, (15)

for m= 0, . . . , qij , where{ξijm}qijm=0 are the degrees of freedom to be determined for componentUi(t) on

the intervalIij , {w[qij ]
mn }qijm=0,n=0 are weights,τij mapsIij to (0,1]: τij (t) = (t − ti,j−1)/(tij − ti,j−1), and

{s[qij ]
n }qijn=0 are quadrature points defined on[0,1].
The strategy we use to solve the discrete equations (15) is by direct fixed point iteration, pos

combination with a simplified Newton’s method. To evolve the system, we need to collect the d
of freedom for different components between two time levels and solve the discrete equations fo
degrees of freedom. We refer to such a collection of elements between two time levels as a time s
Fig. 1). New time slabs are formed as we evolve the system starting at timet = 0, in the same way a
new time intervals are formed in a standard solver which uses the same time steps for all comp
On each time slab, we thus compute the degrees of freedom{ξijm}qijm=0 for each element within the tim
slab using (15), and repeat the iterations until the computational error is below a given tolerance
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Fig. 2. Multi-adaptive time-stepping within a time slab for a system with two components.

computational error. The iterations are carried out in order, starting at the element closest to timt = 0
and continuing until we reach the last element within the time slab. This is illustrated in Fig. 2.

The motivation for using direct fixed point iteration, rather than using a full Newton’s method, i
we want to avoid forming the Jacobian (which may be very large, since the nonlinear system to be
is for the entire time slab) and also avoid solving the linearised system. Instead, using the stra
adaptive damping of the fixed point iterations as described in the next section, the linear algebra
into the adaptive solver. Since often only a small number of fixed point iterations are needed, ty
only two or three iterations, we believe this to be an efficient approach.

5. Stiff problems

As discussed in the previous section, the nonlinear discrete equations given by the (implicit)
adaptive Galerkin methods are solved using fixed point iteration on each time slab. For stiff pro
these iterations may fail to converge. We now discuss a simple way to stabilise a stiff system, in o
make the explicit fixed point iterations convergent.

For simplicity, we assume that the time step sequence,k1, k2, . . . , kM , is the same for all component

5.1. The test equation

To demonstrate the main idea, we consider the stabilisation of the explicit Euler method applie
simpletest equation:{

u̇(t)+ λu(t)= 0 for t > 0,
u(0) = u0,

(16)

whereλ > 0 andu0 is a given initial condition. The solution is given byu(t) = exp(−λt)u0.
The explicit Euler method for the test equation reads

Un =Un−1 − knλU
n−1 = (1− knλ)U

n−1.
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This method is conditionally stable, with stability guaranteed ifknλ� 2. If λ is large, this is too restrictive
outside transients.
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Now, letK be a large time step satisfyingKλ > 2 and letk a small time step chosen so thatkλ < 2.
Consider the method

Un = (1− kλ)m(1−Kλ)Un−1, (17)

corresponding to one explicit Euler step with large time stepK andm explicit Euler steps with sma
time stepsk, wherem is a positive integer to be determined. Altogether this corresponds to a tim
of sizekn =K +mk. For the overall method to be stable, we require that|1− kλ|m(Kλ− 1)� 1, that is

m� log(Kλ− 1)

− log |1− kλ| ≈ log(Kλ)

c
, (18)

if Kλ� 1 andc = kλ is of moderate size, sayc = 1/2.
We conclude thatm will be quite small and hence the small time steps will be used only in a s

fraction of the total time interval, giving a large effective time step. To see this, define thecost as
α = 1+m

K+km
∈ (1/K,1/k), i.e., the number of time steps per unit interval. Classical stability analysis

α = 1/k = λ/2 with a maximum time stepk = 2/λ. Using (18) we instead find

α ≈ 1+ log(Kλ)/c

K + log(Kλ)/λ
≈ λ

c
log(Kλ)/(Kλ)� λ/c, (19)

for Kλ� 1. The cost is thus decreased by the cost reduction factor

2 log(Kλ)

cKλ
∼ log(Kλ)

Kλ
,

which can be quite significant for large values ofKλ.

5.2. The general nonlinear problem

For the general nonlinear problem (1), the gain is determined by the distribution of the eigenva
the Jacobian, see [16]. The method of stabilising the system using a couple of small stabilising tim
is best suited for systems with a clear separation of the eigenvalues into small and large eigenva
even for the semi-discretised heat equation (for which we have a whole range of eigenvalues)
can be substantial, as we shall see below.

5.3. An adaptive algorithm

In [16] we present an adaptive algorithm in which both the size of the small stabilising time
and the number of such small time steps are automatically determined. Using adaptive stabilisa
damping is targeted precisely at the current unstable eigenmode, which as a consequence allows
integration also of problems with no clear separation of its eigenvalues.



348 A. Logg / Applied Numerical Mathematics 48 (2004) 339–354

6. Numerical examples
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The numerical examples presented in this section are divided into two categories: examples illu
the concept of multi-adaptivity and examples illustrating explicit time-stepping (or explicit fixed
iteration) for stiff problems.

6.1. Multi-adaptivity

The two examples presented below are taken from [30], in which further examples are presen
discussed in more detail.

6.1.1. A mechanical multi-scale system
To demonstrate the potential of the multi-adaptive methods, we consider a dynamical system i

a small part of the system oscillates rapidly. The problem is to compute accurately the position
velocities) of theN point-masses attached together with springs of equal stiffness as in Fig. 3.

We choose a small time step for the smallest mass and large time steps for the larger mas
measure the work for the mcG(1) method as we increase the number of larger masses. The work i
compared to the work required for the standard cG(1) method using the same (small) time step for

Fig. 3. A mechanical system consisting ofN = 5 masses attached together with springs.

Fig. 4. Error, cpu time, total number of steps, and number of function evaluations as function of the number of masse
multi-adaptive cG(1) method (dashed) and the standard cG(1) method (solid).
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Fig. 5. The concentrations of the two species,U1 andU2, at timet = 50 as function of space (above), and the correspon
time steps (below).

masses. As is evident in Fig. 4, the work (in terms of function evaluations) increases linearly
standard method, whereas for the multi-adaptive method it remains practically constant.

6.1.2. Reaction–diffusion
Next consider the following system of PDEs:{

u̇1 − εu′′
1 = −u1u

2
2,

u̇2 − εu′′
2 = u1u

2
2,

(20)

on (0,1) × (0, T ] with ε = 0.001,T = 100 and homogeneous Neumann boundary conditions atx = 0
andx = 1, which models isothermal auto-catalytic reactions (see [33]):A1 +2A2 →A2 +2A2. As initial
conditions, we takeu1(x,0) = 0 for 0< x < x0, u1(x,0) = 1 for x0 � x < 1, andu2(x,0) = 1−u1(x,0)
with x0 = 0.2. An initial reaction where substanceA1 is consumed and substanceA2 is formed will
then take place atx = x0, resulting in a decrease in the concentrationu1 and an increase in th
concentrationu2. The reaction then propagates to the right until all of substanceA1 is consumed and
we haveu1 = 0 andu2 = 1 in the entire domain.

Computing the solution using the mcG(2) method, we find that the time steps are automatically cho
to be small only in the vicinity of the reaction front, see Fig. 5, and during the computation the reg
small time steps will propagate to the right at the same speed as the reaction front.

6.2. Explicit time-stepping for stiff problems

To illustrate the technique of stabilisation for stiff problems, we present below some examples
from [16]. In these examples, the costα is compared to the costα0 of a standard implementation of th
cG(1) method in which we are forced to take a small time step all the time. (These small time ste
marked by dashed lines in the figures.) Comparison has not been made with an implicit metho



350 A. Logg / Applied Numerical Mathematics 48 (2004) 339–354

linear
ize and
thods,

dly
duction

ps
f
ed

and is
sists of
Fig. 6. Solution and time step sequence for Eq. (21),α/α0 ≈ 1/310.

it would be difficult to make such a comparison fair; one could always argue about the choice of
solver and preconditioner. However, judging by the modest restriction of the average time step s
the low cost of the explicit method, we believe our approach to be competitive also with implicit me
although this remains to be seen.

6.2.1. The test equation
The first problem we try is the test equation:{

u̇(t)+ λu(t)= 0 for t > 0,

u(0) = u0,
(21)

on [0,10], where we chooseu0 = 1 andλ = 1000. As is shown in Fig. 6, the time step is repeate
decreased to stabilise the stiff system, but overall the effective time step is large and the cost re
factor isα/α0 ≈ 1/310.

6.2.2. The test system
For the test system,{

u̇(t)+Au(t) = 0 for t > 0,

u(0) = u0,
(22)

on [0,10], we takeA= diag(100,1000) andu0 = (1,1). As seen in Fig. 7, most of the stabilising ste
are chosen to damp out the eigenmode corresponding to the largest eigenvalue,λ2 = 1000, but some o
the damping steps are targeted at the second eigenvalue,λ1 = 100. The selective damping is handl
automatically by the adaptive algorithm and the cost reduction factor is again significant:α/α0 ≈ 1/104.

6.2.3. The HIRES problem
The so-called HIRES problem (“High Irradiance RESponse”) originates from plant physiology

taken from the test set of ODE problems compiled by Lioen and de Swart [36]. The problem con
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Fig. 7. Solution and time step sequence for Eq. (22),α/α0 ≈ 1/104.

Fig. 8. Solution and time step sequence for Eq. (23),α/α0 ≈ 1/33.

the following eight equations:


u̇1 = −1.71u1 + 0.43u2 + 8.32u3 + 0.0007,
u̇2 = 1.71u1 − 8.75u2,

u̇3 = −10.03u3 + 0.43u4 + 0.035u5,

u̇4 = 8.32u2 + 1.71u3 − 1.12u4,

u̇5 = −1.745u5 + 0.43u6 + 0.43u7,

u̇6 = −280.0u6u8 + 0.69u4 + 1.71u5 − 0.43u6 + 0.69u7,

u̇7 = 280.0u6u8 − 1.81u7,

u̇8 = −280.0u6u8 + 1.81u7,

(23)
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forms
Fig. 9. Solution and time step sequence for Eq. (25),α/α0 ≈ 1/17.

on [0,321.8122] (as specified in [36]). The initial condition is given byu0 = (1.0,0,0,0,0,0,0,0.0057).
The cost reduction factor is nowα/α0 ≈ 1/33, see Fig. 8.

6.3. The heat equation

Finally, we consider the heat equation in one dimension:

{
u̇(x, t)− u′′(x, t) = f (x, t), x ∈ (0,1), t > 0,
u(0) = u(1) = 0,
u(·, t)= 0,

(24)

where we choosef (x, t)= f (x) as an approximation of the Dirac delta function atx = 0.5. Discretising
in space, we obtain the ODE{

u̇(t)+Au(t) = f, t > 0,
u(0) = 0,

(25)

whereA is thestiffness matrix. With a spatial resolution ofh= 0.01, the eigenvalues ofA are distributed
in the interval[0,4·104] (see Fig. 9). The selective damping produced by the adaptive algorithm per
well and the cost reduction factor isα/α0 ≈ 1/17.
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