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Abstract

Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales of the
system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the different
time scales are localised to different components, corresponding to localisation in space for a PDE, efficient time
integration thus requires that we use different time steps for different components.

We present an overview of the multi-adaptive Galerkin methods @gc@&nd mdGg) recently introduced in a
series of papers by the author. In these methods, the time step sequence is selected individually and adaptively fo
each component, based on an a posteriori error estimate of the global error.

The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations which are
solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations may fail
to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff systems.
To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODESs, in which the
explicit method is adaptively stabilised by a small number of small, stabilising time steps.
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1. Introduction

In earlier work [29,30], we have introduced the multi-adaptive Galerkin methodsgme®d mdGq)
for ODEs of the type

w(t) = f(u(),t), t€(0,T],
{M(O)Zuo, @)

whereu : [0, T] — R is the solution to be computedy € RY a given initial condition,7” > 0 a given
final time, andf :RY x (0, T] — R" a given function that is Lipschitz-continuous inand bounded.
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We use the ternmulti-adaptivity to describe methods with individual time-stepping for the different
componentsy; (t) of the solution vectom(r) = (u;(¢)), including (i) time step length, (ii) order, and
(i) quadrature, all chosen adaptively in a computational feed-back process.

Surprisingly, individual time-stepping for ODEs has received little attention in the large literature
on numerical methods for ODEs, see, e.g., [4,24,25,2,34]. For specific applications, suchnas the
body problem, methods with individual time-stepping have been used, see, e.g., [31,1,5], but a general
methodology has been lacking. For time-dependent PDEs, in particular for conservation laws of the type
u+ f(u), =0, attempts have been made to construct methods with individual (locally varying in space)
time steps. Flaherty et al. [22] have constructed a method based on the discontinuous Galerkin method
combined with local explicit Euler time-stepping. A similar approach is taken in [6] where a method
based on the original work by Osher and Sanders [32] is presented for conservation laws in one and
two space dimensions. Typically the time steps used are based on local CFL conditions rather than error
estimates for the global error and the methods are low order in time (me&ni)gWe believe that
our work on multi-adaptive Galerkin methods (including error estimation and arbitrary order methods)
presents a general methodology to individual time-stepping, which will result in efficient integrators both
for ODEs and time-dependent PDEs.

The multi-adaptive methods are developed within the general framework of adaptive Galerkin methods
based on piecewise polynomial approximation (finite element methods) for differential equations,
including the continuous and discontinuous Galerkin methodg x@nd dGq), which we extend to
their multi-adaptive analogues m¢g and mdGgq). Earlier work on adaptive error control for the ¢3
and d@g) methods include [7,17,27,19,18,21]. See also [10,11,9,12-14], and [8] or [20] in particular
for an overview of adaptive error control based on duality techniques. The approach to error analysis and
adaptivity presented in these references naturally carries over to the multi-adaptive methods.

1.1. The stiffness problem

The classical wisdom developed in the 1950s regarding stiff ODESs is that efficient integration requires
implicit (A-stable) methods, at least outside transients where the time steps may be chosen large from
accuracy point of view. Using an explicit method (with a bounded stability region) the time steps have
to be small at all times for stability reasons, in particular outside transients, and the advantage of a low
cost per time step for the explicit method is counter-balanced by the necessity of taking a large number
of small time steps. As a result, the overall efficiency of an explicit method for a stiff ODE is small.

We encounter the same problem when we try to use explicit fixed point iteration to solve the discrete
equations given by the multi-adaptive Galerkin methods (gp¢@nd mdGgq). However, it turns out that
if a sequence of large (unstable) time steps are accompanied by a suitable (small) number of small time
steps, a stiff system can be stabilised to allow integration with an effective time step much larger than the
largest stable time step given by classical stability analysis. This idea of stabilising a stiff system using
the inherent damping property of the stiff system itself was first developed in an automatic and adaptive
setting in [16], and will be further explored in the full multi-adaptive setting. A similar approach is taken
in recent independent work by Gear and Kevrekidis [3]. The relation to Runge—Kutta methods based on
Chebyshev polynomials discussed by Verwer in [26] should also be noted.
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Fig. 1. Individual partitions of the interva0, T'] for different components. Elements between common synchronised time levels
are organised in time slabs. In this example, we h¥ive 6 andM = 4.

1.2. Notation

The following notation is used in the discussion of the multi-adaptive Galerkin methods below: Each
componentl;(t), i = 1,..., N, of the approximate iit/d)G(q) solution U(¢) of (1) is a piecewise
polynomial on a partition of0O, 7] into M; subintervals. Subintervgl for component is denoted by
I;j = (t; j-1, t;j1, and the length of the subinterval is given by the ldgak stepk;; =#; — 1, ;_1. Thisis
illustrated in Fig. 1. On each subintervg], U;|,,; is a polynomial of degreg;; and we refer ta7;;, U;|;,;)
as arelement

Furthermore, we shall assume that the inter@I7'] is partitioned into blocks between certain
synchronised time levels8 Ty < Ty < --- < Ty = T. We refer to the set of interval§, between two
synchronised time levels,_; and7, as atime slab 7, = {/;;: T,—1 <t j—1 < t;; < T,}, and we denote
the length of a time slab bk, = T, — T,,_1. The patrtition consisting of the entire collection of intervals
is denoted byl = J7,.

1.3. Outline

The outline of the paper is as follows: In Section 2, we formulate the multi-adaptive Galerkin methods
mcG&(g) and mdQGg). In Section 3, we discuss error control and adaptivity. In particular, we show
how to choose the individual time steps based on an a posteriori error estimate for the global error.
In Section 4, we give a quick overview of an iterative method (based on fixed point iteration) for the
system of nonlinear discrete equations that needs to be solved on each time slab, and in Section 5 we
describe a technigue that can be used to stabilise the explicit fixed point iterations for stiff problems.
Finally, in Section 6, we present a number of numerical examples chosen to illustrate both the potential
of multi-adaptivity and the use of explicit fixed point iteration (or explicit time-stepping) for stiff
problems.
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2. Multi-adaptive Galerkin
2.1. Multi-adaptive continuous Galerkimc&(q)

To give the definition of the mc@) method, we define thigial spaceV and thetest spacéV as

v={velc(to,T)]": vly, e PU ), j=1,...,M;, i=1,...,N},

W={v: vl eP NIy, j=1.... M, i= 1,...,N},
whereP?(I) denotes the linear space of polynomials of degree0 on the intervall. In other words,
V is the space of continuous piecewise polynomials of degreey; (r) = g;;, t € I;; on the partitionT,
and W is the space of (in general discontinuous) piecewise polynomials of degrek on the same
partition.

We define the mc@) method for (1) as follows: Find/ € V with U (0) = ug, such that
T T

/(U v)dr /(f(U ), v)dr YveWw, (3)

0 0
where (-, -) denotes the standard inner productR?. If now for each local intervall;; we take
v, = 0 whenn # i andv;(t) = 0 whent ¢ I;;, we can rewrite the global problem (3) as a number of

successive local problems for each component:iked, ..., N, j=1,..., M;, find Uil € P4i(l;;)
with U; (#; j—1) given from the previous time interval, such that

/U[vdtz/ﬁ(U, Jv dt Vvqui~f*l(I[j). 4)

Iij I;j

(2)

We define thaesidual R of the approximate solutioV to be R(U,t) = U(t) — f(U(¢), ). In terms

of the residual, we can rewrite (4) rﬁ” R;(U,Yvdr =0 for all v Pqif‘l(l,»j), i.e., the residual is
orthogonal to the test space on every local interval. We refer to this &aleekin orthogonalityof the

mcG&(g) method.

2.2. Multi-adaptive discontinuous GalerkimdG(g)

For the mdGq) method, we define the trial and test spaces by
V=W={vivul, Py, j=1....M;, i=1,...,N}, (5)
i.e., both trial and test functions are (in general discontinuous) piecewise polynomials of gegree
qi(t) = q,j, t € 1;; on the partition7 .
We define the md@) method for (1) as follows, similar to the definition of the continuous method:
Find U € V with U (07) = ug, such that
T

ZZ[[U, v (e l)+fUividti|=/(f(U, ),v)dt YoeWw, (6)

i=1 j=1 0

where[-] denotes the jump, i.€ly]; = v(t;) — ().
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The mdGgq) method in local form, corresponding to (4), reads: Ferl,...,N, j=1,..., M;, find
Uiy, € P% (I;;), such that

[U,»]i,j,lv(ti,j,l) + / Ul-v dr = / fi(U, v dr Vv e P (Iij)a (7)

I I

where the initial condition is specified for=1,..., N, by U;(07) = u,;(0). In the same way as for
the continuous method, we define the resid®alof the approximate solutio to be R(U,t) =
U(t) — f(U@),t), defined on the inner of every local intervdl,, and rewrite (7) in the form
(Uili,j—1v (i, j—1) +f1,-,» R;(U, - )vdr =0forallv e P9 (I;;). We refer to this as the Galerkin orthogonality
of the mdGg) method.

3. Error control and adaptivity

Our goal is to compute an approximatidn(7) of the exact solution«(T) of (1) at final timeT
within a given tolerance TOE 0, using a minimal amount of computational work. This goal includes
an aspect ofeliability (the error should be less than the tolerance) and an aspefftadéncy(minimal
computational work). To measure the error we choose a norm, such as the Euclideah- fjosmR”,
or more generally some other quantity of interest.

We discuss below both a priori and a posteriori error estimates for the multi-adaptive Galerkin
methods, and the application of the a posteriori error estimates in multi-adaptive time-stepping.

3.1. A priori error estimates

Standard (duality-based) a priori error estimates show that the order for the ordinary Galerkin methods
cG(g) and dGgq) is 29 and 2 + 1, respectively. A generalisation of these estimates to the multi-adaptive
methods gives the same result. The multi-adaptive continuous Galerkin methag me@wus of order
2q, and the multi-adaptive discontinuous Galerkin method (@d@ of order 2 + 1.

3.2. A posteriori error estimates

A posteriori error analysis in the general framework of [8] relies on the concept afudeproblem
The dual problem of the initial value problem (1) is the linearised backward problem given by

—$=J"u,U,¢p  on[0,T),
¢(T)=e(T)/|e(T)|
where the Jacobiad is given byJ(u, U, -) = fol %(su + (1—s5)U,-)ds and* denotes the transpose.

We use the dual problem to represent the error in terms of the dual sofuéiod the residuaR. For the
mcG(g) method the representation formula is given by

(8)

El

T
le(T)| = /(R, ) dt, (9)
0
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and for the md@&;) method, we obtain

N M;
le) ]| =" Uil ja¢itija) + / R;(U, )¢ . (10)
i=1 j=1 I;j
Using the Galerkin orthogonalities together with special interpolation estimates (see [29]), we obtain
a posteriori error estimates of the form

N

Jem)]| <> st max{ Ck{'ri}, (11)
i=1

for the mcGgq) method, and

[gi+1] i
|e()| < Zs‘f E)\%)(qu ri), (12)

for the mdGg) method, whereC is an interpolation constant; is a local measure of the residual, and
the individualstability factorss; are given bys'“! = [T |¢\%’| dr. Typically, the stability factors are of
moderate size for a stiff problem (and of unit size for a parabolic problem), which means that accurate
computation is possible over long time intervals. Note that the Lipschitz constant, which is large for a
stiff problem, is not present in these estimates.

The analysis can be extended to include @ismputational errorsarising from solving the discrete
equations using an iterative method, anpddrature errors arising from evaluating the integrals in (4)
and (7) using quadrature.

3.3. Adaptivity

To achieve the goals stated at the beginning of this section, the adaptive algorithm chooses individual
time steps for the different components based on the a posteriori error estimates. Using for example a
standardPID regulator from control theory, we choose the individual time steps for each component to
satisfy

SiCkj;'rij =TOL/N, (13)
or, taking the logarithm witlC; = log(TOL /(N S;C)),
pijlogki; +logri; = C;, (14)

with maximal time stepsk;; }, following work by Soderlind and coworkers [23,35]. Heyg; = g;; for
the mcGg) method andp;; = g;; + 1 for the mdGg) method.

To solve the dual problem (8), which is needed to compute the stability factors, it would seem that
we need to know the errerT), since this is used as an initial value for the dual problem. However, we
know from experience that the stability factors are quite insensitive to the choice of initial data for the
dual problem. (A motivation of this for parabolic problems is given in [15].) Thus in practice, a random
(and normalised) value is chosen as initial data for the dual problem. Another approach is to take the
initial value for the dual problem to bg(7) = (0,...,0,1,0,...,0), i.e., a vector of zeros except for a
single component which is of size one. This gives an estimate for a chosen component of the error. By
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other choices of data for the dual problem, other functionals of the error can be controlled. In either case,
the stability factors are computed using quadrature from the computed dual solution.

The adaptive algorithm can be expressed as follows: Given a tolerance-T)make a preliminary
estimate for the stability factors and then

(i) Solve the primal problem with time steps based on (13);
(i) Solve the dual problem and compute the stability factors;
(i) Compute an error bound’ based on (9) or (10);
(iv) If E < TOL then stop; if not go back to (i).

Note that we use the error representations (9) and (10) to obtain sharp error estimates. On the other hanc
the error estimates (11) and (12) are used to determine the adaptive time step sequences.

To limit the computational work, it is desirable that only a few iterations in the adaptive algorithm are
needed. In the simplest case, the error estimate will stay below the given tolerance on the first attempt.
Otherwise, the algorithm will try to get below the tolerance the second time. It is also possible to limit
the number of times the dual problem is solved. It should also be noted that to obtain an error estimate at
a timer = r, different from the final time", the dual problem has to be solved backwards also from time
t. This may be necessary in some cases if the stability factors do not grow monotonically as functions
of the final timeT', but for many problems the stability factors grow with indicating accumulation of
errors.

Our experience is that automatic computation based on this adaptive strategy is both reliable (the error
estimates are quite close to the actual error) and efficient (the additional cost for solving the dual problem
is quite small). See [28] for a discussion on this topic.

4. lterative methodsfor the nonlinear system

The nonlinear discrete algebraic equations given by the (gic@&d mdGg) methods presented in
Section 2 (including numerical quadrature) to be solved on every local intgptake the form
qij
[gij] — [gij] — [gij]
Sijm = SijO +kij an;InJ fi(U(T,‘jl(anJ ))a Tl'jl(an" ))’ (15)
n=0

form=0,...,q;, Where{gijm}zl"’zo are the degrees of freedom to be determined for compdnignt on
lgijl\qij
J } J

the intervall;;, {wmn },,_o,—o @re weightsg;; maps/;; to (0, 1]: ;; (1) = (t — ; j—1)/(tij — t; j-1), and

{si1)% are quadrature points defined [ 1].

The strategy we use to solve the discrete equations (15) is by direct fixed point iteration, possibly in
combination with a simplified Newton’s method. To evolve the system, we need to collect the degrees
of freedom for different components between two time levels and solve the discrete equations for these
degrees of freedom. We refer to such a collection of elements between two time levels as a time slab (see
Fig. 1). New time slabs are formed as we evolve the system starting at tin® in the same way as
new time intervals are formed in a standard solver which uses the same time steps for all components.
On each time slab, we thus compute the degrees of fredégm’”_, for each element within the time

m=

slab using (15), and repeat the iterations until the computational error is below a given tolerance for the
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Fig. 2. Multi-adaptive time-stepping within a time slab for a system with two components.

computational error. The iterations are carried out in order, starting at the element closestrte-time
and continuing until we reach the last element within the time slab. This is illustrated in Fig. 2.

The motivation for using direct fixed point iteration, rather than using a full Newton’s method, is that
we want to avoid forming the Jacobian (which may be very large, since the nonlinear system to be solved
is for the entire time slab) and also avoid solving the linearised system. Instead, using the strategy for
adaptive damping of the fixed point iterations as described in the next section, the linear algebra is built
into the adaptive solver. Since often only a small number of fixed point iterations are needed, typically
only two or three iterations, we believe this to be an efficient approach.

5. Stiff problems

As discussed in the previous section, the nonlinear discrete equations given by the (implicit) multi-
adaptive Galerkin methods are solved using fixed point iteration on each time slab. For stiff problems
these iterations may fail to converge. We now discuss a simple way to stabilise a stiff system, in order to
make the explicit fixed point iterations convergent.

For simplicity, we assume that the time step sequehgés, ..., ky, is the same for all components.

5.1. The test equation
To demonstrate the main idea, we consider the stabilisation of the explicit Euler method applied to the

simpletest equation

u(@)+ru(t)=0 forr >0,
u(0) = uo,

wherei > 0 andug is a given initial condition. The solution is given byr) = exp(—At)ug.
The explicit Euler method for the test equation reads

(16)

U'=U"1—kU"1=1-k, )U".
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This method is conditionally stable, with stability guarantedg if < 2. If A is large, this is too restrictive
outside transients.

Now, let K be a large time step satisfyingA > 2 and letk a small time step chosen so that < 2.
Consider the method

U= 1—k))"(1—K)U", (17)

corresponding to one explicit Euler step with large time skepndm explicit Euler steps with small
time stepsk, wherem is a positive integer to be determined. Altogether this corresponds to a time step
of sizek, = K + mk. For the overall method to be stable, we require that kA|" (KA — 1) < 1, thatis

log(K2 —1) _log(K2x)
Z “logll—kxr ¢

(18)

if KA > 1 andc =k is of moderate size, say=1/2.

We conclude thaiz will be quite small and hence the small time steps will be used only in a small
fraction of the total time interval, giving a large effective time step. To see this, definedstas
o= KlI/Tm € (1/K,1/k), i.e., the number of time steps per unit interval. Classical stability analysis gives
a =1/k = A/2 with a maximum time step = 2/A. Using (18) we instead find

_ 1+log(Kh)/c

A
~—————— ~ —|og(KA) /(KA A 19
N T Toa K n ¢ 9(KL) /(K1) <A/, 19)
for KA > 1. The cost is thus decreased by the cost reduction factor

2log(KX) log(KA)
cKA Kx

which can be quite significant for large valueskok.
5.2. The general nonlinear problem

For the general nonlinear problem (1), the gain is determined by the distribution of the eigenvalues of
the Jacobian, see [16]. The method of stabilising the system using a couple of small stabilising time steps
is best suited for systems with a clear separation of the eigenvalues into small and large eigenvalues, bu
even for the semi-discretised heat equation (for which we have a whole range of eigenvalues) the gain
can be substantial, as we shall see below.

5.3. An adaptive algorithm

In [16] we present an adaptive algorithm in which both the size of the small stabilising time steps
and the number of such small time steps are automatically determined. Using adaptive stabilisation, the
damping is targeted precisely at the current unstable eigenmode, which as a consequence allows efficien
integration also of problems with no clear separation of its eigenvalues.
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6. Numerical examples

The numerical examples presented in this section are divided into two categories: examples illustrating
the concept of multi-adaptivity and examples illustrating explicit time-stepping (or explicit fixed point
iteration) for stiff problems.

6.1. Multi-adaptivity

The two examples presented below are taken from [30], in which further examples are presented and
discussed in more detail.

6.1.1. A mechanical multi-scale system

To demonstrate the potential of the multi-adaptive methods, we consider a dynamical system in which
a small part of the system oscillates rapidly. The problem is to compute accurately the positions (and
velocities) of theN point-masses attached together with springs of equal stiffness as in Fig. 3.

We choose a small time step for the smallest mass and large time steps for the larger masses, anc
measure the work for the mg¢® method as we increase the number of larger masses. The work is then
compared to the work required for the standard YGnethod using the same (small) time step for all

N s

Fig. 3. A mechanical system consistingf= 5 masses attached together with springs.
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Fig. 4. Error, cpu time, total number of steps, and number of function evaluations as function of the number of masses, for the
multi-adaptive c@1) method (dashed) and the standard £Gnethod (solid).
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Fig. 5. The concentrations of the two speci&g,andU», at timet = 50 as function of space (above), and the corresponding
time steps (below).

masses. As is evident in Fig. 4, the work (in terms of function evaluations) increases linearly for the
standard method, whereas for the multi-adaptive method it remains practically constant.

6.1.2. Reaction—diffusion
Next consider the following system of PDEs:

{b’tl—eu’l’z—ulu%, (20)

g — Uy = uqu3,
on (0,1) x (0, T] with e =0.001, T = 100 and homogeneous Neumann boundary conditions=a0
andx = 1, which models isothermal auto-catalytic reactions (see [33]} 24, — Ao+ 2A,. As initial
conditions, we taka1(x,0) =0 for 0 < x < xg, u1(x,0) =1forxg <x <1, andus(x,0) =1—u4(x, 0
with xg = 0.2. An initial reaction where substancg, is consumed and substande is formed will
then take place at = xg, resulting in a decrease in the concentrationand an increase in the
concentratioru,. The reaction then propagates to the right until all of substahces consumed and
we haveu; =0 andu, = 1 in the entire domain.

Computing the solution using the m¢& method, we find that the time steps are automatically chosen

to be small only in the vicinity of the reaction front, see Fig. 5, and during the computation the region of
small time steps will propagate to the right at the same speed as the reaction front.

6.2. Explicit time-stepping for stiff problems

To illustrate the technique of stabilisation for stiff problems, we present below some examples taken
from [16]. In these examples, the cesis compared to the cost of a standard implementation of the
cG(1) method in which we are forced to take a small time step all the time. (These small time steps are
marked by dashed lines in the figures.) Comparison has not been made with an implicit method, since
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Fig. 6. Solution and time step sequence for Eq. (210 ~ 1/310.

it would be difficult to make such a comparison fair; one could always argue about the choice of linear
solver and preconditioner. However, judging by the modest restriction of the average time step size and
the low cost of the explicit method, we believe our approach to be competitive also with implicit methods,
although this remains to be seen.

6.2.1. The test equation
The first problem we try is the test equation:

{ u(@)+ru()=0 forr >0,
u(0) = uo,
on [0, 10], where we chooses = 1 andi = 1000. As is shown in Fig. 6, the time step is repeatedly

decreased to stabilise the stiff system, but overall the effective time step is large and the cost reduction
factor iso/ag ~ 1/310.

(21)

6.2.2. The test system
For the test system,
u(t) + Au(t) =0 fort >0,
{ u(0) = uo,
on [0, 10], we takeA = diag(100, 1000 andug = (1, 1). As seen in Fig. 7, most of the stabilising steps
are chosen to damp out the eigenmode corresponding to the largest eigelyatuE)00, but some of

the damping steps are targeted at the second eigenvalue,100. The selective damping is handled
automatically by the adaptive algorithm and the cost reduction factor is again signifigapt> 1/104.

(22)

6.2.3. The HIRES problem
The so-called HIRES problem (“High Irradiance RESponse”) originates from plant physiology and is
taken from the test set of ODE problems compiled by Lioen and de Swart [36]. The problem consists of
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Fig. 8. Solution and time step sequence for Eq. (230 ~ 1/33.

the following eight equations:

1 =—21.7lu; + 0.43u5 + 8.32u3 + 0.0007,

up=1.71u1 — 8.75u,,

3 = —10.03u3 + 0.43u4 + 0.035:5,

g =832+ 1.71uz — 1.12u4,

s = —1.74%5 + 0.43us + 0.43u7,

g = —2800ugug + 0.69u4 + 1.71us — 0.43ue + 0.69u7,
u7 = 2800usug — 1.81u7,

g = —2800usug + 1.81u7,

351

(23)
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Fig. 9. Solution and time step sequence for Eq. (23 ~ 1/17.

on[0, 3218122 (as specified in [36]). The initial condition is given by= (1.0, 0, 0, 0, 0, 0, 0, 0.0057).
The cost reduction factor is now/ag ~ 1/33, see Fig. 8.

6.3. The heat equation

Finally, we consider the heat equation in one dimension:

u(0) =u(l) =0, (24)

{L’t(x, t)y—u"(x,t) = f(x,t), x€(0,1),t>0,
u(-,t) =0,

where we choosé (x, ) = f(x) as an approximation of the Dirac delta functiorxat 0.5. Discretising
in space, we obtain the ODE

u()+ Au(t)=f, t>0,

{ u(0) =0, (25)

whereA is thestiffness matrixWith a spatial resolution df = 0.01, the eigenvalues of are distributed
in the interval[0, 4- 10*] (see Fig. 9). The selective damping produced by the adaptive algorithm performs
well and the cost reduction factordgag~ 1/17.
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