
MULTI-ADAPTIVE GALERKIN METHODS FOR ODES II:
IMPLEMENTATION AND APPLICATIONS∗

ANDERS LOGG†

SIAM J. SCI. COMPUT. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 4, pp. 1119–1141

Abstract. Continuing the discussion of the multi-adaptive Galerkin methods mcG(q) and
mdG(q) presented in [A. Logg, SIAM J. Sci. Comput., 24 (2003), pp. 1879–1902], we present
adaptive algorithms for global error control, iterative solution methods for the discrete equations,
features of the implementation Tanganyika, and computational results for a variety of ODEs. Ex-
amples include the Lorenz system, the solar system, and a number of time-dependent PDEs.

Key words. multi-adaptivity, individual time-steps, local time-steps, ODE, continuous Galerkin,
discontinuous Galerkin, global error control, adaptivity, mcG(q), mdG(q), applications, Lorenz, solar
system, Burger

AMS subject classifications. 65L05, 65L07, 65L20, 65L50, 65L60, 65L70, 65L80

DOI. 10.1137/S1064827501389734

1. Introduction. In this paper we apply the multi-adaptive Galerkin methods
mcG(q) and mdG(q), presented in [10], to a variety of problems chosen to illustrate
the potential of multi-adaptivity. Throughout this paper, we solve the ODE initial
value problem {

u̇(t) = f(u(t), t), t ∈ (0, T],
u(0) = u0,

(1.1)

where u : [0, T] → R
N , f : R

N × (0, T] → R
N is a given bounded function that is

Lipschitz continuous in u, u0 ∈ R
N is a given initial condition, and T > 0 a given

final time.
We refer to [10] for a detailed description of the multi-adaptive methods. Here

we recall that each component Ui(t) of the approximate solution U(t) is a piecewise
polynomial of degree qi = qi(t) on a partition of (0, T] into Mi subintervals of lengths
kij = tij − ti,j−1, j = 1, . . . ,Mi. On the interval Iij = (ti,j−1, tij], component Ui(t) is
thus a polynomial of degree qij .

Before presenting the examples, we discuss adaptive algorithms for global error
control and iterative solution methods for the discrete equations. We also give a short
description of the implementation Tanganyika.

2. Adaptivity. In this section we describe how to use the a posteriori error
estimates presented in [10] in an adaptive algorithm.

2.1. A strategy for adaptive error control. The goal of the algorithm is to
produce an approximate solution U(t) to (1.1) within a given tolerance TOL for the
error e(t) = U(t)− u(t) in a given norm ‖ · ‖. The adaptive algorithm is based on the
a posteriori error estimates, presented in [10], of the form

‖e‖ ≤
N∑
i=1

Mi∑
j=1

k
pij+1
ij rijsij(2.1)

∗Received by the editors May 23, 2001; accepted for publication (in revised form) May 1, 2003;
published electronically December 5, 2003.

http://www.siam.org/journals/sisc/25-4/38973.html
†Department of Computational Mathematics, Chalmers University of Technology, SE–412 96

Göteborg, Sweden (logg@math.chalmers.se).

1119

1120 ANDERS LOGG

or

‖e‖ ≤
N∑
i=1

Si max
j
k
pij

ij rij ,(2.2)

where {sij} are stability weights, {Si} are stability factors (including interpolation

constants), rij is a local measure of the residual Ri(U, ·) = U̇i − f(U, ·) of the approx-
imate solution U(t), and where we have pij = qij for mcG(q) and pij = qij + 1 for
mdG(q).

We use (2.2) to determine the individual time-steps, which should then be chosen
as

kij =

(
TOL/N

Si rij

)1/pij

.(2.3)

We use (2.1) to evaluate the resulting error at the end of the computation, noting
that (2.1) is sharper than (2.2).

The adaptive algorithm may then be expressed as follows: Given a tolerance
TOL > 0, make a preliminary guess for the stability factors and then

(i) solve the primal problem with time-steps based on (2.3).
(ii) solve the dual problem and compute stability factors and stability weights.
(iii) compute an error estimate E based on (2.1).
(iv) if E ≤ TOL, then stop, and if not, go back to (i).
Although this seems simple enough, there are some difficulties involved. For

one thing, choosing the time-steps based on (2.3) may be difficult, since the residual
depends implicitly on the time-step. Furthermore, we have to choose the proper data
for the dual problem to obtain a meaningful error estimate. We now discuss these
issues.

2.2. Regulating the time-step. To avoid the implicit dependence on kij for
rij in (2.3), we may try replacing (2.3) with

kij =

(
TOL/N

Si ri,j−1

)1/pij

.(2.4)

Following this strategy, if the time-step on an interval is small (and thus also is the
residual), the time-step for the next interval will be large, so that (2.4) introduces
unwanted oscillations in the size of the time-step. We therefore try to be a bit more
conservative when choosing the time-step to obtain a smoother time-step sequence.
For (2.4) to work, the time-steps on adjacent intervals need to be approximately
the same, and so we may think of choosing the new time-step as the (geometric)
mean value of the previous time-step and the time-step given by (2.4). This works
surprisingly well for many problems, meaning that the resulting time-step sequences
are comparable to what can be obtained with more advanced regulators.

We have also used standard PID (or just PI) regulators from control theory with
the goal of satisfying

Sik
pij

ij rij = TOL/N,(2.5)

or, taking the logarithm with Ci = log(TOL/(NSi)),

pij log kij + log rij = Ci,(2.6)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1121

with maximal time-steps {kij}, following work by Söderlind [15] and Gustafsson,
Lundh, and Söderlind [6]. This type of regulator performs a little better than the
simple approach described above, provided the parameters of the regulator are well
tuned.

2.3. Choosing data for the dual. Different choices of data ϕT and g for the
dual problem give different error estimates, as described in [10], where estimates for
the quantity

LϕT ,g(e) = (e(T), ϕT) +

∫ T

0

(e, g) dt

were derived. The simplest choices are g = 0 and (ϕT)i = δin for control of the final
time error of the nth component. For control of the l2-norm of the error at final
time, we take g = 0 and ϕT = ẽ(T)/‖ẽ(T)‖ with an approximation ẽ of the error e.
Another possibility is to take ϕT = 0 and gi(t) = δin for control of the average error
in component n.

If the data for the dual problem are incorrect, the error estimate may also be
incorrect: with ϕT (or g) orthogonal to the error, the error representation gives only
0 ≤ TOL. In practice, however, the dual—or at least the stability factors—seems
to be quite insensitive to the choice of data for many problems so that it is, in fact,
possible to guess the data for the dual.

2.4. Adaptive quadrature. In practice, integrals included in the formulation
of the two methods mcG(q) and mdG(q) have to be evaluated using numerical quadra-
ture. To control the resulting quadrature error, the quadrature rule can be chosen
adaptively, based on estimates of the quadrature error presented in [10].

2.5. Adaptive order, q-adaptivity. The formulations of the methods include
the possibility of individual and varying orders for the different components, as well
as different and varying time-steps. The method is thus q-adaptive (or p-adaptive) in
the sense that the order can be changed. At this stage, however, lacking a strategy
for when to increase the order and when to decrease the time-step, the polynomial
orders have to be chosen in an ad hoc fashion for every interval. One way to choose
time-steps and orders could be to solve over some short time-interval with different
time-steps and orders, and optimize the choice of time-steps and orders with respect
to the computational time required for achieving a certain accuracy. If we suspect
that the problem will change character, we will have to repeat this procedure at a
number of control points.

3. Solving the discrete equations. In this section we discuss how to solve the
discrete equations that we obtain when we discretize (1.1) with the multi-adaptive
Galerkin methods. We do this in two steps. First, we present a simple explicit
strategy, and then we extend this strategy to an iterative method.

3.1. A simple strategy. As discussed in [10], the nonlinear discrete algebraic
equations for the mcG(q) method (including numerical quadrature) to be solved on
every local interval Iij take the form

ξijm = ξij0 + kij

qij∑
n=0

w[qij]
mn fi(U(τ−1

ij (s[qij]n)), τ−1
ij (s[qij]n)), m = 1, . . . , qij ,(3.1)

where {ξijm}qijm=1 are the degrees of freedom to be determined for component Ui(t)

on interval Iij , {w[qij]
mn }qijm=1,n=0 are weights, {s[qij]n }qijn=0 are quadrature points, and τij

1122 ANDERS LOGG

maps Iij to (0, 1]: τij(t) = (t − ti,j−1)/(tij − ti,j−1). The discrete equations for the
mdG(q) method are similar in structure and so we focus on the mcG(q) method.

The equations are conveniently written in fixed point form, so we may apply
fixed point iteration directly to (3.1); i.e., we make an initial guess for the values of
{ξijm}qijm=1, e.g., ξijm = ξij0 for m = 1, . . . , qij , and then compute new values for these
coefficients from (3.1), repeating the procedure until convergence.

Note that component Ui(t) is coupled to all other components through the right-
hand side fi = fi(U, ·). This means that we have to know the solution for all other
components in order to compute Ui(t). Conversely, we have to know Ui(t) to compute
the solutions for all other components, and since all other components step with
different time-steps, it seems at first very difficult to solve the discrete equations
(3.1).

As an initial simple strategy we may try to solve the system of nonlinear equations
(3.1) by direct fixed point iteration. All unknown values, for the component itself and
all other needed components, are interpolated or extrapolated from their latest known
values. Thus, if for component i we need to know the value of component l at some
time ti, and we only know values for component l up to time tl < ti, the strategy is
to extrapolate Ul(t) from the interval containing tl to time ti, according to the order
of Ul(t) on that interval.

In what order should the components now make their steps? Clearly, to update a
certain component on a specific interval, we would like to use the best possible values
of the other components. This naturally leads to the following strategy:

The last component steps first.(3.2)

This means that we should always make a step with the component that is closest
to time t = 0. Eventually (or after one step), this component catches up with one
of the other components, which then in turn becomes the last component, and the
procedure continues according to the strategy (3.2), as described in Figure 3.1.

This gives an explicit time-stepping method in which each component is updated
individually once, following (3.2), and in which we never go back to correct mistakes.
This corresponds to fixed point iterating once on the discrete equations (3.1), which
implicitly define the solution. We now describe how to extend this explicit time-
stepping strategy to an iterative process, in which the discrete equations are solved
to within a prescribed tolerance.

3.2. An iterative method. To extend the explicit strategy described in the
previous section to an iterative method, we need to be able to go back and redo
iterations if necessary. We do this by arranging the elements—we think of an element
as a component Ui(t) on a local interval Iij—in a time-slab. This contains a number of
elements, a minimum of N elements, and moves forward in time. On every time-slab,
we have to solve a large system of equations, namely, the system composed of the
element equations (3.1) for every element within the time-slab. We solve this system
of equations iteratively, by direct fixed point iteration, or by some other method as
described below, starting from the last element in the time-slab, i.e., the one closest to
t = 0, and continuing forward to the first element in the time-slab, i.e., the one closest
to t = T . These iterations are then repeated from beginning to end until convergence,
which is reached when the computational residuals, as defined in [10], on all elements
are small enough.

3.3. The time-slab. The time-slab can be constructed in many ways. One is by
dyadic partitioning, in which we compute new time-steps for all components, based

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1123

0 T

Fig. 3.1. The last component steps first and all needed values are extrapolated or interpolated.

on residuals and stability properties, choose the largest time-step K as the length of
the new time-slab, and then, for every component, choose the time-step as a fraction
K/2n. The advantage of such a partition are that the time-slab has straight edges; i.e.,
for every time-slab there is a common point in time t′ (the end-point of the time-slab)
which is an end-point for the last element of every component in the time-slab, and
that the components have many common nodes. The disadvantage is that the choice
of time-steps is constrained.

Another possibility is a rational partition of the time-slab. We choose the largest
individual time-stepK as the length of the time-slab, and time-steps for the remaining
components are chosen as fractions of this large time-step, K/2, K/3, K/4, and so on.
In this way we increase the set of possible time-step selections, as compared to dyadic
partitioning, but the number of common nodes shared between different components
is decreased.

A third option is to not impose any constraint at all on the selection of time-
steps—except that we match the final time end-point. The time-steps may vary
also within the time-slab for the individual components. The price we have to pay
is that we have in general no common nodes, and the edges of the time-slab are
no longer straight. We illustrate the three choices of partitioning schemes in Figure
3.2. Although dyadic or rational partitioning is clearly advantageous in terms of easier
bookkeeping and common nodes, we focus below on unconstrained time-step selection.
In this way we stay close to the original, general formulation of the multi-adaptive
methods. We refer to this as the time-crawling approach.

3.4. The time-crawling approach. The construction of the time-slab brings
with it a number of technical and algorithmic problems. We will not discuss here the
implementational and data structural aspects of the algorithm—there will be much
to keep track of and this has to be done in an efficient way—but we will give a brief

1124 ANDERS LOGG

0 T

 T

 T

Fig. 3.2. Different choices of time-slabs. Top: a dyadic partition of the time-slab; middle: a
rational partition; bottom: a partition used in the time-crawling approach, where the only restriction
on the time-steps is that we match the final time end-point T .

account of how the time-slab is formed and updated.
Assume that in some way we have formed a time-slab, such as the one in Figure

3.3. We make iterations on the time-slab, starting with the last element and continuing
to the right. After iterating through the time-slab a few times, the computational
(discrete) residuals, corresponding to the solution of the discrete equations (3.1), on
all elements have decreased below a specified tolerance for the computational error,
indicating convergence.

For the elements at the front of the slab (those closest to time t = T), the
values have been computed using extrapolated values of many of the other elements.
The strategy now is to leave behind only those elements that are fully covered by all

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1125

0 T

Fig. 3.3. The time-slab used in the time-crawling approach to multi-adaptive time-stepping
(dark grey). Light grey indicates elements that have already been computed.

other elements. These are then cut off from the time-slab, which then decreases in
size. Before starting the iterations again, we have to form a new time-slab. This will
contain the elements of the old time-slab that were not removed, and a number of new
elements. We form the new time-slab by requiring that all elements of the previous
time-slab be totally covered within the new time-slab. In this way we know that every
new time-slab will produce at least N new elements. The time-slab is thus crawling
forward in time rather than marching.

An implementation of the method then contains the three consecutive steps de-
scribed above: iterating on an existing time-slab, decreasing the size of the time-slab
(cutting off elements at the end of the time-slab, i.e., those closest to time t = 0), and
incorporating new elements at the front of the time-slab.

Remark 3.1. Even if an element within the time-slab is totally covered by all
other elements, the values on this element still may not be completely determined, if
they are based on the values of some other element that is not totally covered, or if
this element is based on yet another element that is not totally covered, and so on. To
avoid this, one can impose the requirement that the time-slabs should have straight
edges.

3.5. Diagonal Newton. For stiff problems the time-step condition required for
convergence of direct fixed point iteration is too restrictive, and we need to use a more
implicit solution strategy.

Applying a full Newton’s method, we increase the range of allowed time-steps and
also the convergence rate, but this is costly in terms of memory and computational
time, which is especially important in our setting, since the size of the slab may often
be much larger than the number of components, N (see Figure 3.3). We thus look for
a simplified Newton’s method which does not increase the cost of solving the problem,
as compared to direct fixed point iteration, but still has some advantages of the full
Newton’s method.

Consider for simplicity the case of the multi-adaptive backward Euler method,

1126 ANDERS LOGG

i.e., the mdG(0) method with end-point quadrature. On every element we then want
to solve

Uij = Ui,j−1 + kijfi(U(tij), tij).(3.3)

In order to apply Newton’s method we write (3.3) as

F (V) = 0(3.4)

with Fi(V) = Uij −Ui,j−1 − kijfi(U(tij), tij) and Vi = Uij . Newton’s method is then

V n+1 = V n − (F ′(V n))−1F (V n).(3.5)

We now simply replace the Jacobian with its diagonal so that for component i we
have

Un+1
ij = Un

ij −
Un
ij − Ui,j−1 − kijfi

1 − kij ∂fi
∂ui

(3.6)

with the right-hand side evaluated at V n. We now note that we can rewrite this as

Un+1
ij = Un

ij − θ(Un
ij − Ui,j−1 − kijfi) = (1 − θ)Un

ij + θ(Ui,j−1 + kijfi)(3.7)

with

θ =
1

1 − kij ∂fi
∂ui

(3.8)

so that we may view the simplified Newton’s method as a damped version, with
damping θ, of the original fixed point iteration.

The individual damping parameters are cheap to compute. We do not need to
store the Jacobian and we do not need linear algebra. We still obtain some of the
good properties of the full Newton’s method.

For the general mcG(q) or mdG(q) method, the same analysis applies. In this
case, however, when we have more degrees of freedom to solve for on every local
element, 1 − kij ∂fi

∂ui
will be a small local matrix of size q × q for the mcG(q) method

and size (q + 1) × (q + 1) for the mdG(q) method.

3.6. Explicit or implicit. Both mcG(q) and mdG(q) are implicit methods since
they are implicitly defined by the set of equations (3.1) on each time-slab. However,
depending on the solution strategy for these equations, the resulting fully discrete
scheme may be of more or less explicit character. Using a diagonal Newton’s method
as in the current implementation of Tanganyika, we obtain a method of basically
explicit nature. This gives an efficient code for many applications, but we may expect
to meet difficulties for stiff problems.

3.7. The stiffness problem. In a stiff problem the solution varies quickly inside
transients and slowly outside transients. For accuracy the time-steps will be adap-
tively kept small inside transients and then will be within the stability limits of an
explicit method, while outside transients larger time-steps will be used. Outside the
transients the diagonal Newton’s method handles stiff problems of sufficiently diago-
nal nature. Otherwise the strategy is to decrease the time-steps whenever needed for
stability reasons. Typically this results in an oscillating sequence of time-steps where

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1127

a small number of large time-steps are followed by a small number of stabilizing small
time-steps.

Our solver Tanganyika thus performs like a modern unstable jet fighter, which
needs small stabilizing wing flaps to follow a smooth trajectory. The pertinent ques-
tion is then the number of small stabilizing time-steps per large time-step. We ana-
lyze this question in [3] and show that for certain classes of stiff problems it is indeed
possible to successfully use a stabilized explicit method of the form implemented in
Tanganyika.

3.8. Preparations. There are many “magic numbers” that need to be computed
in order to implement the multi-adaptive methods, such as quadrature points and
weights, the polynomial weight functions evaluated at these quadrature points, etc.
In Tanganyika, these numbers are computed at the startup of the program and stored
for efficient access. Although somewhat messy to compute, these are all computable
by standard techniques in numerical analysis; see, e.g., [13].

3.9. Solving the dual problem. In addition to solving the primal problem
(1.1), we also have to solve the continuous dual problem to obtain error control. This
is an ODE in itself that we can solve using the same solver as for the primal problem.

In order to solve this ODE, we need to know the Jacobian of f evaluated at a
mean value of the true solution u(t) and the approximate solution U(t). If U(t) is
sufficiently close to u, which we will assume, we approximate the (unknown) mean
value by U(t). When solving the dual, the primal solution must be accessible, and the
Jacobian must be computed numerically by difference quotients if it is not explicitly
known. This makes the computation of the dual solution expensive. Error control
can, however, be obtained at a reasonable cost: for one thing, the dual problem does
not have to be solved with as high a precision as the primal problem; a relative error
of, say, 10% may be disastrous for the primal, whereas for the dual this only means
that the error estimate will be off by 10%, which is acceptable. Second, the dual
problem is linear, which may be taken into account when implementing a solver for
the dual. If we can afford the linear algebra, as we can for reasonably small systems,
we can solve the discrete equations directly without any iterations.

4. Tanganyika. We now give a short description of the implementation of the
multi-adaptive methods, Tanganyika, which has been used to obtain the numerical
results presented below.

4.1. Purpose. The purpose of Tanganyika [12] is to be a working implementa-
tion of the multi-adaptive methods. The code is open-source (GNU GPL [1]), which
means that anyone can freely review the code, which is available at http://www.phi.
chalmers.se/tanganyika/. Comments are welcome.

4.2. Structure and implementation. The solver is implemented as a C/C++
library. The C++ language makes abstraction easy, which allows the implementation
to follow closely the formulation of the two methods. Different objects and algorithms
are thus implemented as C++ classes, including Solution, Element, cGqElement,
dGqElement, TimeSlab, ErrorControl, Galerkin, Component, and so on.

5. Applications. In this section, we present numerical results for a variety of
applications. We discuss some of the problems in detail and give a brief overview of
the rest. A more extensive account can be found in [11].

1128 ANDERS LOGG

Fig. 5.1. A mechanical system consisting of N = 5 masses attached with springs.

5.1. A simple test problem. To demonstrate the potential of the multi-adaptive
methods, we consider a dynamical system in which a small part of the system oscil-
lates rapidly. The problem is to accurately compute the positions (and velocities) of
the N point-masses attached with springs of equal stiffness, as in Figure 5.1.

If we choose one of the masses to be much smaller than the others, m1 = 10−4

and m2 = m3 = · · · = mN = 1, then we expect the dynamics of the system to be
dominated by the smallest mass, in the sense that the resolution needed to compute
the solution will be completely determined by the fast oscillations of the smallest
mass.

To compare the multi-adaptive method with a standard method, we first compute
with constant time-steps k = k0 using the standard cG(1) method and measure the
error, the cpu time needed to obtain the solution, the total number of steps, i.e.,
M =

∑N
i=1Mi, and the number of local function evaluations. We then compute the

solution with individual time-steps, using the mcG(1) method, choosing the time-steps
ki = k0 for the position and velocity components of the smallest mass, and choosing
ki = 100k0 for the other components (knowing that the frequency of the oscillations
scales like 1/

√
m). For demonstration purposes, we thus choose the time-steps a priori

to fit the dynamics of the system.
We repeat the experiment for increasing values of N (see Figure 5.2) and find

that the error is about the same and constant for both methods. As N increases, the
total number of time-steps, the number of local function evaluations (including also
residual evaluations), and the cpu time increase linearly for the standard method, as
we expect. For the multi-adaptive method, on the other hand, the total number of
time-steps and local function evaluations remains practically constant as we increase
N . The cpu time increases somewhat, since the increasing size of the time-slabs
introduces some overhead, although not nearly as much as for the standard method.
For this particular problem the gain of the multi-adaptive method is thus a factor N ,
where N is the size of the system, so that by considering a large-enough system, the
gain is arbitrarily large.

5.2. The Lorenz system. We consider now the famous Lorenz system,

ẋ = σ(y − x),
ẏ = rx− y − xz,
ż = xy − bz,

(5.1)

with the usual data (x(0), y(0), z(0)) = (1, 0, 0), σ = 10, b = 8/3, and r = 28; see
[5]. The solution u(t) = (x(t), y(t), z(t)) is very sensitive to perturbations and is often
described as “chaotic.” With our perspective this is reflected by stability factors with
rapid growth in time.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1129

5 10 15 20
0

2

4

6

8

x 10
−5

5 10 15 20
0

5

10

15

20

5 10 15 20
0

1

2

3

4
x 10

4

5 10 15 20
0

2

4

6

8

10

x 10
6

‖e
(T

)‖
∞

cp
u

ti
m

e
/

se
co

n
d
s

fu
n
ct

io
n

ev
al

u
at

io
n
s

st
ep

s

20 40 60 80 100
0

2

4

6

8

x 10
−5

20 40 60 80 100
0

10

20

30

40

50

60

70

20 40 60 80 100
0

0.5

1

1.5

2
x 10

5

20 40 60 80 100
0

1

2

3

4

5

x 10
7

‖e
(T

)‖
∞

cp
u

ti
m

e
/

se
co

n
d
s

fu
n
ct

io
n

ev
al

u
at

io
n
s

st
ep

s

Fig. 5.2. Error, cpu time, total number of steps, and number of function evaluations as function
of the number of masses for the multi-adaptive cG(1) method (dashed lines) and the standard cG(1)
method (solid lines).

1130 ANDERS LOGG

0 10 20 30 40
−30

−20

−10

0

10

20

30

40

50

−20 −10 0 10 20
0

5

10

15

20

25

30

35

40

45

50

x

zU

t

Fig. 5.3. On the right is the trajectory of the Lorenz system for final time T = 40, computed with
the multi-adaptive cG(5) method. On the left is a plot of the time variation of the three components.

The computational challenge is to solve the Lorenz system accurately on a time-
interval [0, T] with T as large as possible. In Figure 5.3 is shown a computed solution
which is accurate on the interval [0, 40]. We investigate the computability of the
Lorenz system by solving the dual problem and computing stability factors to find
the maximum value of T . The focus in this section is not on multi-adaptivity—we
will use the same time-steps for all components, and so mcG(q) becomes cG(q)—but
on higher-order methods and the precise information that can be obtained about the
computability of a system from solving the dual problem and computing stability
factors.

As an illustration, we present in Figure 5.4 solutions obtained with different meth-
ods and constant time-step k = 0.1 for all components. For the lower-order methods,
cG(5) to cG(11), it is clear that the error decreases as we increase the order. Starting
with the cG(12) method, however, the error does not decrease as we increase the
order. To explain this, we note that in every time-step a small round-off error of size
∼ 10−16 is introduced if the computation is carried out in double precision arithmetic.
These errors accumulate at a rate determined by the growth of the stability factor
for the computational error (see [10]). As we shall see below, this stability factor
grows exponentially for the Lorenz system and reaches a value of 1016 at final time
T = 50, and so at this point the accumulation of round-off errors results in a large
computational error.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1131

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

cG
(5

)
cG

(6
)

cG
(7

)
cG

(8
)

cG
(9

)
cG

(1
0)

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

cG
(1

1)
cG

(1
2)

cG
(1

3)
cG

(1
4)

cG
(1

5)

Fig. 5.4. Solutions for the x-component of the Lorenz system with methods of different order,
using a constant time-step k = 0.1. Dotted lines indicate the point beyond which the solution is no
longer accurate.

1132 ANDERS LOGG

0 5 10 15 20 30 35 40 45 50

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

T

S̄
[0

] (
T

)

Fig. 5.5. The stability factor for computational and quadrature errors, as function of time for
the Lorenz system.

5.2.1. Stability factors. We now investigate the computation of stability fac-
tors for the Lorenz system. For simplicity we focus on global stability factors, such
as

S[q](T) = max
‖v‖=1

∫ T

0

‖ϕ(q)(t)‖ dt,(5.2)

where ϕ(t) is the solution of the dual problem obtained with ϕ(T) = v (and g = 0).
Letting Φ(t) be the fundamental solution of the dual problem, we have

max
‖v‖=1

∫ T

0

‖Φ(q)(t)v‖ dt ≤
∫ T

0

max
‖v‖=1

‖Φ(q)(t)v‖ dt =

∫ T

0

‖Φ(q)(t)‖ dt= S̄[q](T).(5.3)

This gives a bound S̄[q](T) for S[q](T), which for the Lorenz system turns out to be
quite sharp and which is simpler to compute since we do not have to compute the
maximum in (5.2).

In Figure 5.5 we plot the growth of the stability factor for q = 0, corresponding to
computational and quadrature errors as described in [10]. The stability factor grows
exponentially with time, but not as fast as indicated by an a priori error estimate.
An a priori error estimate indicates that the stability factors grow as

S[q](T) ∼ AqeAT ,(5.4)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1133

where A is a bound for the Jacobian of the right-hand side for the Lorenz system. A
simple estimate is A = 50, which already at T = 1 gives S[0](T) ≈ 1022. In view of
this, we would not be able to compute even to T = 1, and certainly not to T = 50,
where we have S[0](T) ≈ 101000. The point is that although the stability factors grow
very rapidly on some occasions, such as near the first flip at T = 18, the growth is not
monotonic. The stability factors thus effectively grow at a moderate exponential rate.

5.2.2. Conclusions. To predict the computability of the Lorenz system, we
estimate the growth rate of the stability factors. A simple approximation of this
growth rate, obtained from numerically computed solutions of the dual problem, is

S̄[q](T) ≈ 4 · 10(q−3)+0.37T(5.5)

or just

S̄[q](T) ≈ 10q+T/3.(5.6)

From the a posteriori error estimates presented in [10], we find that the computational
error can be estimated as

EC ≈ S[0](T) max
[0,T]

‖RC‖,(5.7)

where the computational residual RC is defined as

RC
i (t) =

1

kij

(
U(tij) − U(ti,j−1) −

∫
Iij

fi(U, ·) dt
)
.(5.8)

With 16 digits of precision a simple estimate for the computational residual is 1
kij

10−16,

which gives the approximation

EC ≈ 10T/3 1

min kij
10−16 = 10T/3−16 1

min kij
.(5.9)

With time-steps kij = 0.1 as above we then have

EC ≈ 10T/3−15,(5.10)

and so already at time T = 45 we have EC ≈ 1 and the solution is no longer accurate.
We thus conclude by examination of the stability factors that it is difficult to reach
beyond time T = 50 in double precision arithmetic. (With quadruple precision we
would be able to reach time T = 100.)

5.3. The solar system. We now consider the solar system, including the Sun,
the Moon, and the nine planets, which is a particularly important n-body problem of
the form

miẍi =
∑
j 	=i

Gmimj

|xj − xi|3 (xj − xi),(5.11)

where xi(t) = (x1
i (t), x2

i (t), x3
i (t)) denotes the position of body i at time t, mi is the

mass of body i, and G is the gravitational constant.
As initial conditions we take the values at 00.00 Greenwich mean time on January

1, 2000, obtained from the United States Naval Observatory [2], with initial velocities

1134 ANDERS LOGG

0 1 2 3 4 5 6 7 8 9 10

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

ϕ

t

Fig. 5.6. Part of the dual of the solar system with data chosen for control of the error in the
position of the moon at final time.

obtained by fitting a high-degree polynomial to the values of December 1999. This
initial data should be correct to five or more digits, which is similar to the available
precision for the masses of the planets. We normalize length and time to have the space
coordinates per astronomical unit, AU, which is (approximately) the mean distance
between the Sun and Earth, the time coordinates per year, and the masses per solar
mass. With this normalization, the gravitational constant is 4π2.

5.3.1. Predictability. Investigating the predictability of the solar system, the
question is how far we can accurately compute the solution, given the precision in
initial data. In order to predict the accumulation rate of errors, we solve the dual
problem and compute stability factors. Assuming the initial data is correct to five or
more digits, we find that the solar system is computable on the order of 500 years.
Including also the Moon, we cannot compute more than a few years. The dual solution
grows linearly backward in time (see Figure 5.6), and so errors in initial data grow
linearly with time. This means that for every extra digit of increased precision, we
can reach 10 times further.

5.3.2. Computability. To touch briefly on the fundamental question of the
computability of the solar system, concerning how far the system is computable with
correct initial data and correct model, we compute the trajectories for Earth, the
Moon, and the Sun over a period of 50 years, comparing different methods. Since
errors in initial data grow linearly, we expect numerical errors as well as stability
factors to grow quadratically.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1135

0 10 20 30 40 50
−0.5

0

0.5

0 10 20 30 40 50
−0.5

0

0.5

0 10 20 30 40 50
−5

0

5
x 10

−4

0 10 20 30 40 50
−5

0

5
x 10

−3

cG(1)

cG(2)

dG(1)

dG(2)

e
e

tt

Fig. 5.7. The growth of the error over 50 years for the Earth–Moon–Sun system as described
in the text.

In Figure 5.7 we plot the errors for the 18 components of the solution, com-
puted for k = 0.001 with cG(1), cG(2), dG(1), and dG(2). This figure contains
much information. To begin with, we see that the error seems to grow linearly for
the cG methods. This is in accordance with earlier observations [4, 7] for periodic
Hamiltonian systems, recalling that the (m)cG(q) methods conserve energy [10]. The
stability factors, however, grow quadratically and thus overestimate the error growth
for this particular problem. In an attempt to give an intuitive explanation of the
linear growth, we may think of the error introduced at every time-step by an energy-
conserving method as a pure phase error, and so at every time-step the Moon is
pushed slightly forward along its trajectory (with the velocity adjusted accordingly).
Since a pure phase error does not accumulate but stays constant (for a circular orbit),
the many small phase errors give a total error that grows linearly with time.

Examining the solutions obtained with the dG(1) and dG(2) methods, we see
that the error grows quadratically, as we expect. For the dG(1) solution, the error
reaches a maximum level of ∼ 0.5 for the velocity components of the Moon. The error
in position for the Moon is much smaller. This means that the Moon is still in orbit
around Earth, the position of which is still very accurate, but the position relative
to Earth, and thus also the velocity, is incorrect. The error thus grows quadratically
until it reaches a limit. This effect is also visible for the error of the cG(1) solution;
the linear growth flattens out as the error reaches the limit. Notice also that even if

1136 ANDERS LOGG

0 1 2 3 4 5
−4

−2

0

2

4
x 10

−3

0 1 2 3 4 5
−4

−2

0

2

4
x 10

−5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−3

10
−2

10
−1

ee
k

t

tt

All components Position of the Moon

Fig. 5.8. The growth of the error over 5 years for the Earth–Moon–Sun system computed with
the mcG(2) method, together with the multi-adaptive time-steps.

the higher-order dG(2) method performs better than the cG(1) method on a short
time-interval, it will be outrun on a long enough interval by the cG(1) method, which
has linear accumulation of errors (for this particular problem).

5.3.3. Multi-adaptive time-steps. Solving with the multi-adaptive method
mcG(2) (see Figure 5.8), the error grows quadratically. We saw in [10] that in order
for the mcG(q) method to conserve energy, we require that corresponding position
and velocity components use the same time-steps. Computing with different time-
steps for all components, as here, we thus cannot expect to have linear error growth.
Keeping k2

i ri ≤ tol with tol = 10−10 as here, the error grows as 10−4T 2 and we are
able to reach T ∼ 100. Decreasing tol to, say, 10−18, we could instead reach T ∼ 106.

We investigated the passing of a large comet close to Earth and the Moon and
found that the stability factors increase dramatically at the time t′ when the comet
comes very close to the Moon. The conclusion is that if we want to compute accurately
to a point beyond t′, we have to be much more careful than if we want to compute
to a point just before t′. This is not evident from the size of residuals or local errors.
This is an example of a Hamiltonian system for which the error growth is neither
linear nor quadratic.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1137

Fig. 5.9. A space-time plot of the solution (above) and time-steps (below) for the propagating
front problem, with time going to the right. The two parts of the plots represent the components for
the two species A1 (lower parts) and A2 (upper parts).

5.4. A propagating front problem. The system of PDEs{
u̇1 − εu′′1 = −u1u

2
2,

u̇2 − εu′′2 = u1u
2
2

(5.12)

on (0, 1) × (0, T] with ε = 0.00001, T = 100, and homogeneous Neumann boundary
conditions at x = 0 and x = 1 models isothermal autocatalytic reactions (see [14])
A1 + 2A2 → A2 + 2A2. We choose the initial conditions as

u1(x, 0) =

{
0, x < x0,
1, x ≥ x0,

with x0 = 0.2 and u2(x, 0) = 1 − u1(x, 0). An initial reaction where substance A1 is
consumed and substance A2 is formed will then occur at x = x0, resulting in a decrease
in the concentration u1 and an increase in the concentration u2. The reaction then
propagates to the right until all of substance A1 is consumed and we have u1 = 0 and
u2 = 1 in the entire domain.

Solving with the mcG(2) method, we find that the time-steps are small only close
to the reaction front; see Figures 5.9 and 5.10. The reaction front propagates to the
right as does the domain of small time-steps.

It is clear that if the reaction front is localized in space and the domain is large,
there is a lot to gain by using small time-steps only in this area. To verify this, we

1138 ANDERS LOGG

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

xx

xx

U
1

U
2

k
1

k
2

Fig. 5.10. The concentrations of the two species U1 and U2 at time t = 50 as function of space
(above) and the corresponding time-steps (below).

compute the solution to within an accuracy of 10−7 for the final time error with con-
stant time-steps ki(t) = k0 for all components and compare with the multi-adaptive
solution. Computing on a space grid consisting of 16 nodes on [0, 1] (resulting in a
system of ODEs with 32 components), the solution is computed in 2.1 seconds on a
regular workstation. Computing on the same grid with the multi-adaptive method
(to within the same accuracy), we find that the solution is computed in 3.0 seconds.
More work is thus required to compute the multi-adaptive solution, and the reason
is the overhead resulting from additional bookkeeping and interpolation in the multi-
adaptive computation. However, increasing the size of the domain to 32 nodes on
[0, 2] and keeping the same parameters otherwise, we find the solution is now more
localized in the domain and we expect the multi-adaptive method to perform better
compared to a standard method. Indeed, the computation using equal time-steps now
takes 5.7 seconds, whereas the multi-adaptive solution is computed in 3.4 seconds. In
the same way as previously shown in section 5.1, adding extra degrees of freedom
does not substantially increase the cost of solving the problem, since the main work
is done time-stepping the components, which use small time-steps.

5.5. Burger’s equation with moving nodes. As a final example, we present a
computation in which we combine multi-adaptivity with the possibility of moving the
nodes in a space discretization of a time-dependent PDE. Solving Burger’s equation,

u̇+ µuu′ − εu′′ = 0,(5.13)

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

x

U
(x

)
U

(x
)

U
(x

)

Fig. 5.11. The solution to Burger’s equation as function of space at t = 0, t = T/2, and t = T .

on (0, 1) × (0, T] with initial condition

u0(x) =

{
sin(πx/x0), 0 ≤ x ≤ x0,
0 elsewhere,

(5.14)

and with µ = 0.1, ε = 0.001, and x0 = 0.3, we find the solution is a shock forming near
x = x0. Allowing individual time-steps within the domain, and moving the nodes of
the space discretization in the direction of the convection, (1, µu), we make the ansatz

U(x, t) =

N∑
i=1

ξi(t)ϕi(x, t),(5.15)

where the {ξi}Ni=1 are the individual components computed with the multi-adaptive
method, and the {ϕi(·, t)}Ni=1 are piecewise linear basis functions in space for any
fixed t.

Solving with the mdG(0) method, the nodes move into the shock, in the direction
of the convection, so what we are really solving is a heat equation with multi-adaptive
time-steps along the streamlines; see Figures 5.11 and 5.12.

6. Future work. Together with the companion paper [10] (see also [9, 8]), this
paper serves as a starting point for further investigation of the multi-adaptive Galerkin
methods and their properties.

1140 ANDERS LOGG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Fig. 5.12. Node paths for the multi-adaptive moving-nodes solution of Burger’s equation.

Future work will include a more thorough investigation of the application of
the multi-adaptive methods to stiff ODEs, as well as the construction of efficient
multi-adaptive solvers for time-dependent PDEs, for which memory usage becomes an
important issue.

REFERENCES

[1] GNU Project Web Server, http://www.gnu.org/.
[2] USNO Astronomical Applications Department, http://aa.usno.navy.mil/.
[3] K. Eriksson, C. Johnson, and A. Logg, Explicit time-stepping for stiff ODEs, SIAM J. Sci.

Comput., 25 (2003), pp. 1142–1157.
[4] D. Estep, The rate of error growth in Hamiltonian-conserving integrators, Z. Angew. Math.

Phys., 46 (1995), pp. 407–418.
[5] D. Estep and C. Johnson, The computability of the Lorenz system, Math. Models Methods

Appl. Sci., 8 (1998), pp. 1277–1305.
[6] K. Gustafsson, M. Lundh, and G. Söderlind, A pi stepsize control for the numerical solution

of ordinary differential equations, BIT, 28 (1988), pp. 270–287.
[7] M. G. Larson, Error growth and a posteriori error estimates for conservative Galerkin ap-

proximations of periodic orbits in Hamiltonian systems, Math. Models Methods Appl. Sci.,
10 (2000), pp. 31–46.

[8] A. Logg, Multi-Adaptive Error Control for ODEs, Preprint 2000-03, Chalmers Finite Element
Center, Chalmers University of Technology, Göteborg, Sweden, 2000. Also available online
from http://www.phi.chalmers.se/preprints/.

[9] A. Logg, A Multi-Adaptive ODE-Solver, Preprint 2000-02, Chalmers Finite Element Center,
Chalmers University of Technology, Göteborg, Sweden, 2000. Also available online from
http://www.phi.chalmers.se/preprints/.

MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs II 1141

[10] A. Logg, Multi-adaptive Galerkin methods for ODEs I, SIAM J. Sci. Comput., 24 (2003),
pp. 1879–1902.

[11] A. Logg, Multi-Adaptive Galerkin Methods for ODEs II: Applications, Preprint 2001-10,
Chalmers Finite Element Center, Chalmers University of Technology, Göteborg, Sweden,
2001. Also available online from http://www.phi.chalmers.se/preprints/.

[12] A. Logg, Tanganyika, Version 1.2, 2001. http://www.phi.chalmers.se/tanganyika/.
[13] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The

Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, UK, 1992.
Also available online from http://www.nr.com.

[14] R. Sandboge, Adaptive Finite Element Methods for Reactive Flow Problems, Ph.D. thesis,
Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden, 1996.

[15] G. Söderlind, The automatic control of numerical integration. Solving differential equations
on parallel computers, CWI Quarterly, 11 (1998), pp. 55–74.

