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Abstract. We present multi-adaptive versions of the standard continuous and discontinuous
Galerkin methods for ODEs. Taking adaptivity one step further, we allow for individual time-
steps, order and quadrature, so that in particular each individual component has its own time-step
sequence. This paper contains a description of the methods, an analysis of their basic properties, and
a posteriori error analysis. In the accompanying paper [A. Logg, SIAM J. Sci. Comput., submitted],
we present adaptive algorithms for time-stepping and global error control based on the results of the
current paper.
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1. Introduction. In this paper, we present multi-adaptive Galerkin methods
for initial value problems for systems of ODEs of the form{

u̇(t) = f(u(t), t), t ∈ (0, T ],
u(0) = u0,

(1.1)

where u : [0, T ] → R
N , f : R

N × (0, T ] → R
N is a given bounded function that is

Lipschitz-continuous in u, u0 ∈ R
N is a given initial condition, and T > 0 is a given

final time. We use the term multi-adaptivity to describe methods with individual
time-stepping for the different components ui(t) of the solution vector u(t) = (ui(t)),
including (i) time-step length, (ii) order, and (iii) quadrature, all chosen adaptively
in a computational feedback process. In the companion paper [29], we apply the
multi-adaptive methods to a variety of problems to illustrate the potential of multi-
adaptivity.

The ODE (1.1) models a very large class of problems, covering many areas of
applications. Often different solution components have different time-scales and thus
ask for individual time-steps. A prime example to be studied in detail below is our
own solar system, where the moon orbits around Earth once every month, whereas
the period of Pluto is 250 years. In numerical simulations of the solar system, the
time-steps needed to track the orbit of the moon accurately are thus much less than
those required for Pluto, the difference in time-scales being roughly a factor 3,000.

Surprisingly, individual time-stepping for ODEs has received little attention in the
large literature on numerical methods for ODEs; see, e.g., [4, 21, 22, 3, 34]. For specific
applications, such as the n-body problem, methods with individual time-stepping have
been used—see, e.g., [31, 1, 5] or [25]—but a general methodology has been lacking.
Our aim is to fill this gap. For time-dependent PDEs, in particular for conservation
laws of the type u̇+ f(u)x = 0, attempts have been made to construct methods with
individual (locally varying in space) time-steps. Flaherty et al. [20] have constructed
a method based on the discontinuous Galerkin method combined with local forward
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Euler time-stepping. A similar approach is taken in [6], where a method based on
the original work by Osher and Sanders [33] is presented for conservation laws in one
and two space dimensions. Typically the time-steps used are based on local CFL
conditions rather than error estimates for the global error and the methods are low
order in time (meaning ≤ 2). We believe that our work on multi-adaptive Galerkin
methods (including error estimation and arbitrary order methods) presents a general
methodology to individual time-stepping, which will result in efficient integrators also
for time-dependent PDEs.

The methods presented in this paper fall within the general framework of adap-
tive Galerkin methods based on piecewise polynomial approximation (finite element
methods) for differential equations, including the continuous Galerkin method cG(q)
of order 2q, and the discontinuous Galerkin method dG(q) of order 2q + 1; more
precisely, we extend the cG(q) and dG(q) methods to their multi-adaptive analogues
mcG(q) and mdG(q). Earlier work on adaptive error control for the cG(q) and dG(q)
methods include [7, 16, 24, 18, 17, 19]. The techniques for error analysis used in these
references, developed by Johnson and coworkers (see, e.g., [11, 12, 10, 13, 14, 15], and
[8] in particular) naturally carries over to the multi-adaptive methods.

The outline of the paper is as follows: In section 2 we summarize the key features
of the multi-adaptive methods, and in section 3 we discuss the benefits of the new
methods in comparison to standard ODE codes. We then motivate and present the
formulation of the multi-adaptive methods mcG(q) and mdG(q) in section 4. Basic
properties of these methods, such as order, energy conservation, and monotonicity, are
discussed in section 5. In the major part of this paper, section 6, we derive a posteriori
error estimates for the two methods based on duality arguments, including Galerkin
errors, numerical errors, and quadrature errors. We also prove an a posteriori error
estimate for stability factors computed from approximate dual solutions.

2. Key features. We summarize the key features of our work on the mcG(q)
and mdG(q) methods as follows.

2.1. Individual time-steps and order. To discretize (1.1), we introduce for
each component, i = 1, . . . , N , a partition of the time-interval (0, T ] into Mi subin-
tervals, Iij = (ti,j−1, tij ], j = 1, . . . ,Mi, and we seek an approximate solution
U(t) = (Ui(t)) such that Ui(t) is a polynomial of degree qij on every local inter-
val Iij . Each individual component Ui(t) thus has its own sequence of time-steps,

{kij}Mi
j=1. The entire collection of individual time-intervals {Iij} may be organized

into a sequence of time-slabs, collecting the time-intervals between certain synchro-
nised time-levels common to all components, as illustrated in Figure 2.1.

2.2. Global error control. Our goal is to compute an approximation U(T ) of
the exact solution u(T ) at final time T within a given tolerance TOL > 0, using a
minimal amount of computational work. This goal includes an aspect of reliability
(the error should be less than the tolerance) and an aspect of efficiency (minimal
computational work). To measure the error we choose a norm, such as the Euclidean
norm ‖ · ‖ on R

N , or more generally some other quantity of interest (see [32]).

The mathematical basis of global error control in ‖ · ‖ for mcG(q) is an error
representation of the form

‖U(T )− u(T )‖ =

∫ T

0

(R,ϕ) dt,(2.1)
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Fig. 2.1. Individual time-discretizations for different components.

where R = (Ri) = R(U, t) = U̇(t)−f(U(t), t) is the residual vector of the approximate
solution U(t), ϕ(t) is the solution of an associated linearized dual problem, and (·, ·)
is the R

N scalar product.
Using the Galerkin orthogonality, the error representation can be converted into

an error bound of the form

‖U(T )− u(T )‖ ≤
N∑
i=1

Si(T ) max
0≤t≤T

ki(t)
qi(t)|Ri(U, t)|,(2.2)

where {Si(T )}Ni=1 are stability factors for the different components, depending on the
dual solution ϕ(t), and where ki(t) = kij , qi(t) = qij for t ∈ Iij . The error bound may

take different forms depending on how
∫ T
0
(R,ϕ) dt is bounded in terms of R and ϕ.

By solving the dual problem numerically, the individual stability factors Si(T )
may be determined approximately, and thus the right-hand side of (2.2) may be
evaluated. The adaptive algorithm seeks to satisfy the stopping criterion

N∑
i=1

Si(T ) max
0≤t≤T

ki(t)
qi(t)|Ri(U, t)| ≤ TOL,(2.3)

with maximal time-steps k = (ki(t)).

2.3. Iterative methods. Both mcG(q) and mdG(q) give rise to systems of
nonlinear algebraic equations, coupling the values of U(t) over each time-slab. Solving
these systems with full Newton may be quite heavy, and we have instead successfully
used diagonal Newton methods of more explicit nature.

2.4. Implementation of higher-order methods. We have implemented
mcG(q) and mdG(q) in C++ for arbitrary q, which in practice means 2q ≤ 50. The
implementation, Tanganyika, is described in more detail in [29] and is publicly (GNU
GPL) available for Linux/Unix [30].

2.5. Applications. We have applied mcG(q) and mdG(q) to a variety of prob-
lems to illustrate their potential; see [29]. (See also [27] and [26].) In these applica-
tions, including the Lorenz system, the solar system, and a number of time-dependent
PDE problems, we demonstrate the use of individual time-steps, and for each system
we solve the dual problem to collect extensive information about the problems stability
features, which can be used for global error control.
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3. Comparison with standard ODE codes. Standard ODE codes use time-
steps which are variable in time but the same for all components, and the time-steps
are adaptively chosen by keeping the “local error” below a given local error tolerance
set by the user. The global error connects to the local error through an estimate,
corresponding to (2.2), of the form

{global error} ≤ S max{local error},(3.1)

where S is a stability factor. Standard codes do not compute S, which means that
the connection between the global error and the local error is left to be determined
by the clever user, typically by computing with a couple of different tolerances.

Comparing the adaptive error control of standard ODE codes with the error con-
trol presented in this paper and the accompanying paper [29], an essential difference
is thus the technique to estimate the global error: either by clever trial-and-error or,
as we prefer, by solving the dual problem and computing the stability factors. Both
approaches carry extra costs and what is best may be debated; see, e.g., [32] for a
comparison.

However, expanding the scope to multi-adaptivity with individual stability factors
for the different components, trial-and-error becomes very difficult or impossible, and
the methods for adaptive time-stepping and error control presented below based on
solving the dual problem seem to bring clear advantages in efficiency and reliability.

For a presentation of the traditional approach to error estimation in ODE codes,
we refer to [2], where the following rather pessimistic view is presented: Here we just
note that a precise error bound is often unknown and not really needed. We take the
opposite view: global error control is always needed and often possible to obtain at a
reasonable cost. We hope that multi-adaptivity will bring new life to the discussion
on efficient and reliable error control for ODEs.

4. Multi-adaptive Galerkin. In this section we present the multi-adaptive
Galerkin methods, mcG(q) and mdG(q), based on the discretization presented in
section 2.1.

4.1. The mcG(q) method. The mcG(q) method for (1.1) reads as follows:
Find U ∈ V with U(0) = u0, such that∫ T

0

(U̇ , v) dt =

∫ T

0

(f(U, ·), v) dt ∀v ∈W,(4.1)

where

V = {v ∈ [C([0, T ])]N : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N},
W = {v : vi|Iij ∈ Pqij−1(Iij), j = 1, . . . ,Mi, i = 1, . . . , N},(4.2)

and where Pq(I) denotes the linear space of polynomials of degree ≤ q on I. The
trial functions in V are thus continuous piecewise polynomials, locally of degree qij ,
and the test functions in W are discontinuous piecewise polynomials that are locally
of degree qij − 1.

Noting that the test functions are discontinuous, we can rewrite the global prob-
lem (4.1) as a number of successive local problems for each component: For i =
1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij) with Ui(ti,j−1) given, such that∫

Iij

U̇iv dt =

∫
Iij

fi(U, ·)v dt ∀v ∈ Pqij−1(Iij).(4.3)



MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1883

We notice the presence of the vector U(t) = (U1(t), . . . , UN (t)) in the local prob-
lem for Ui(t) on Iij . If thus component Ui1(t) couples to component Ui2(t) through f ,
this means that in order to solve the local problem for component Ui1(t) we need to
know the values of component Ui2(t) and vice versa. The solution is thus implicitly
defined by (4.3). Notice also that if we define the residual R of the approximate
solution U as Ri(U, t) = U̇i(t)− fi(U(t), t), we can rewrite (4.3) as∫

Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij−1(Iij),(4.4)

i.e., the residual is orthogonal to the test space on every local interval. We refer to
this as the Galerkin orthogonality for the mcG(q) method.

Making an ansatz for every component Ui(t) on every local interval Iij in terms
of a nodal basis for Pqij (Iij) (see the appendix), we can rewrite (4.3) as

ξijm = ξij0 +

∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(4.5)

where {ξijm}qijm=0 are the nodal degrees of freedom for Ui(t) on the interval Iij ,

{w[q]
m }qm=1 ⊂ Pq−1(0, 1) are corresponding polynomial weight functions, and τij maps

Iij to (0, 1]: τij(t) = (t − ti,j−1)/(tij − ti,j−1). Here we assume that the solution
is expressed in terms of a nodal basis with the end-points included, so that by the
continuity requirement ξij0 = ξi,j−1,qi,j−1

.
Finally, evaluating the integral in (4.5) using nodal quadrature, we obtain a fully

discrete scheme in the form of an implicit Runge–Kutta method: For i = 1, . . . , N ,
j = 1, . . . ,Mi, find {ξijm}qijm=0, with ξij0 given by the continuity requirement, such
that

ξijm = ξij0 + kij

qij∑
n=0

w[qij ]
mn fi(U(τ−1

ij (s[qij ]n )), τ−1
ij (s[qij ]n )), m = 1, . . . , qij ,(4.6)

for certain weights {w[q]
mn} and certain nodal points {s[q]n } (see the appendix).

4.2. The mdG(q) method. The mdG(q) method in local form, corresponding
to (4.3), reads as follows: For i = 1, . . . , N , j = 1, . . . ,Mi, find Ui|Iij ∈ Pqij (Iij),
such that

[Ui]i,j−1v(t
+
i,j−1) +

∫
Iij

U̇iv dt =

∫
Iij

fi(U, ·)v dt ∀v ∈ Pqij (Iij),(4.7)

where [·] denotes the jump, i.e., [v]ij = v(t+ij) − v(t−ij), and the initial condition is

specified for i = 1, . . . , N , by Ui(0
−) = ui(0). On a global level, the trial and test

spaces are given by

V =W = {v : vi|Iij ∈ Pqij (Iij), j = 1, . . . ,Mi, i = 1, . . . , N}.(4.8)

In the same way as for the continuous method, we define the residual R of the ap-
proximate solution U as Ri(U, t) = U̇i(t) − fi(U(t), t), defined on the inner of every
local interval Iij , and we rewrite (4.7) in the form

[Ui]i,j−1v(t
+
i,j−1) +

∫
Iij

Ri(U, ·)v dt = 0 ∀v ∈ Pqij (Iij).(4.9)
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We refer to this as the Galerkin orthogonality for the mdG(q) method. Notice that
this is similar to (4.4) if we extend the integral in (4.4) to include the left end-point of
the interval Iij . (The derivative of the discontinuous solution is a Dirac delta function
at the end-point.)

Making an ansatz for the solution in terms of some nodal basis, we get, as for the
continuous method, the following explicit version of (4.7) on every local interval:

ξijm = ξ−ij0 +
∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt, m = 0, . . . , qij ,(4.10)

or, applying nodal quadrature,

ξijm = ξ−ij0 + kij

qij∑
n=0

w[qij ]
mn fi(U(τ−1

ij (s[qij ]n )), τ−1
ij (s[qij ]n )), m = 0, . . . , qij ,(4.11)

where the weight functions, the nodal points, and the weights are not the same as for
the continuous method.

4.3. The multi-adaptive mcG(q)-mdG(q) method. The discussion above
for the two methods extends naturally to using different methods for different com-
ponents. Some of the components could therefore be solved for using the mcG(q)
method, while for others we use the mdG(q) method. We can even change methods
between different intervals.

Although the formulation thus includes adaptive orders and methods, as well as
adaptive time-steps, our focus will be mainly on adaptive time-steps.

4.4. Choosing basis functions and quadrature. What remains in order to
implement the two methods specified by (4.6) and (4.11) is to choose basis functions
and quadrature. For simplicity and efficiency reasons, it is desirable to let the nodal
points for the nodal basis coincide with the quadrature points. It turns out that for
both methods, the mcG(q) and the mdG(q) methods, this is possible to achieve in
a natural way. We thus choose the q + 1 Lobatto quadrature points for the mcG(q)
method, i.e., the zeros of xPq(x)−Pq−1(x), where Pq is the qth-order Legendre poly-
nomial on the interval; for the mdG(q) method, we choose the Radau quadrature
points, i.e., the zeros of Pq(x) + Pq+1(x) on the interval (with time reversed so as to
include the right end-point). See [28] for a detailed discussion on this subject. The
resulting discrete schemes are related to the implicit Runge–Kutta methods referred
to as Lobatto and Radau methods; see, e.g., [3].

5. Basic properties of the multi-adaptive Galerkin methods. In this sec-
tion we examine some basic properties of the multi-adaptive methods, including order,
energy conservation, and monotonicity.

5.1. Order. The standard cG(q) and dG(q) methods are of order 2q and 2q+1,
respectively. The corresponding properties hold for the multi-adaptive methods, i.e.,
mcG(q) is of order 2q and mdG(q) is of order 2q+1, assuming that the exact solution
u is smooth. We examine this in more detail in subsequent papers.

5.2. Energy conservation for mcG(q). The standard cG(q) method is
energy-conserving for Hamiltonian systems. We now prove that also the mcG(q)
method has this property, with the natural restriction that we should use the same
time-steps for every pair of positions and velocities. We consider a Hamiltonian sys-
tem,

ẍ = −∇xP (x),(5.1)
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on (0, T ] with x(t) ∈ R
N , together with initial conditions for x and ẋ. Here ẍ is the

acceleration, which by Newton’s second law is balanced by the force F (x) = −∇xP (x)
for some potential field P . With u = x and v = ẋ we rewrite (5.1) as[

u̇
v̇

]
=

[
v

F (u)

]
=

[
fu(v)
fv(u)

]
= f(u, v).(5.2)

The total energy E(t) is the sum of the kinetic energy K(t) and the potential energy
P (x(t)),

E(t) = K(t) + P (x(t)),(5.3)

with

K(t) =
1

2
‖ẋ(t)‖2 =

1

2
‖v(t)‖2.(5.4)

Multiplying (5.1) with ẋ it is easy to see that energy is conserved for the continuous
problem, i.e., E(t) = E(0) for all t ∈ [0, T ]. We now prove the corresponding property
for the discrete mcG(q) solution of (5.2).
Theorem 5.1. The multi-adaptive continuous Galerkin method conserves energy

in the following sense: Let (U, V ) be the mcG(q) solution to (5.2) defined by (4.3).
Assume that the same time-steps are used for every pair of positions and corresponding
velocities. Then at every synchronized time-level t̄, such as, e.g., T , we have

K(t̄) + P (t̄) = K(0) + P (0),(5.5)

with K(t) = 1
2‖V (t)‖2 and P (t) = P (U(t)).

Proof. If every pair of positions and velocities have the same time-step sequence,
then we may choose V̇ as a test function in the equations for U , to get∫ t̄

0

(U̇ , V̇ ) dt =

∫ t̄

0

(V, V̇ ) dt =
1

2

∫ t̄

0

d

dt
‖V ‖2 dt = K(t̄)−K(0).

Similarly, U̇ may be chosen as a test function in the equations for V to get∫ t̄

0

(V̇ , U̇) dt =

∫ t̄

0

−∇P (U)U̇ dt = −
∫ t̄

0

d

dt
P (U) dt = −(P (t̄)− P (0)),

and thus K(t̄) + P (t̄) = K(0) + P (0).
Remark 5.1. Energy conservation requires exact integration of the right-hand

side f (or at least that
∫ t
0
(U̇ , V̇ ) dt+ (P (t)− P (0)) = 0) but can also be obtained in

the case of quadrature; see [23].

5.3. Monotonicity. We shall prove that the mdG(q) method is B-stable (see
[3]).
Theorem 5.2. Let U and V be the mdG(q) solutions of (1.1) with initial data

U(0−) and V (0−), respectively, defined by (4.7) on the same partition. If the right-
hand side f is monotone, i.e.,

(f(u, ·)− f(v, ·), u− v) ≤ 0 ∀u, v ∈ R
N ,(5.6)

then, at every synchronized time-level t̄, such as, e.g., T , we have

‖U(t̄−)− V (t̄−)‖ ≤ ‖U(0−)− V (0−)‖.(5.7)
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Proof. Choosing the test function as v = W = U − V in (4.7) for U and V ,
summing over the local intervals, and subtracting the two equations, we have

∑
ij

[
[Wi]i,j−1W

+
i,j−1 +

∫
Iij

ẆiWi dt

]
=

∫ T

0

(f(U, ·)− f(V, ·), U − V ) dt ≤ 0.

Noting that

[Wi]i,j−1W
+
i,j−1 +

∫
Iij
ẆiWi dt = 1

2 (W
+
i,j−1)

2 + 1
2 (W

−
ij )

2 −W−
i,j−1W

+
i,j−1

= 1
2 [Wi]

2
i,j−1 +

1
2

(
(W−

ij )
2 − (W−

i,j−1)
2
)
,

we get

−1

2
‖W (0−)‖2 +

1

2
‖W (T−)‖2 ≤

∑
ij

[Wi]i,j−1W
+
i,j−1 +

∫
Iij

ẆiWi dt ≤ 0,

so that

‖W (T−)‖ ≤ ‖W (0−)‖.
The proof is completed noting that the same analysis applies with T replaced by any
other synchronized time-level t̄.

Remark 5.2. The proof extends to the fully discrete scheme, using the positivity
of the quadrature weights.

6. A posteriori error analysis. In this section we prove a posteriori error
estimates for the multi-adaptive Galerkin methods, including quadrature and discrete
solution errors. Following the procedure outlined in the introduction, we first define
the dual linearized problem and then derive a representation formula for the error in
terms of the dual and the residual.

6.1. The dual problem. The dual problem comes in two different forms: a
continuous and a discrete. For the a posteriori error analysis of this section, we will
make use of the continuous dual. The discrete dual problem is used to prove a priori
error estimates.

To set up the continuous dual problem, we define, for given functions v1(t) and
v2(t),

J∗(v1(t), v2(t), t) =
(∫ 1

0

∂f

∂u
(sv1(t) + (1− s)v2(t), t) ds

)∗
,(6.1)

where ∗ denotes the transpose, and we note that

J(v1, v2, ·)(v1 − v2) =
∫ 1

0
∂f
∂u (sv1 + (1− s)v2, ·) ds (v1 − v2)

=
∫ 1

0
∂f
∂s (sv1 + (1− s)v2, ·) ds = f(v1, ·)− f(v2, ·).

(6.2)

The continuous dual problem is then defined as the following system of ODEs:{ −ϕ̇ = J∗(u, U, ·)ϕ+ g on [0, T ),
ϕ(T ) = ϕT ,

(6.3)

with data ϕT and right-hand side g. Choosing the data and right-hand side appropri-
ately, we obtain error estimates for different quantities of the computed solution. We

shall assume below that the dual solution has q continuous derivatives (ϕ
(qij)
i ∈ C(Iij)

locally on interval Iij) for the continuous method and q + 1 continuous derivatives

(ϕ
(qij+1)
i ∈ C(Iij) locally on interval Iij) for the discontinuous method.



MULTI-ADAPTIVE GALERKIN METHODS FOR ODEs I 1887

6.2. Error representation. The basis for the error analysis is the following
error representation, expressing the error of an approximate solution U(t) in terms of
the residual R(U, t) via the dual solution ϕ(t). We stress that the result of the theorem
is valid for any piecewise polynomial approximation of the solution to the initial value
problem (1.1) and thus in particular the mcG(q) and mdG(q) approximations.
Theorem 6.1. Let U be a piecewise polynomial approximation of the exact so-

lution u of (1.1), and let ϕ be the solution to (6.3) with right-hand side g(t) and
initial data ϕT , and define the residual of the approximate solution U as R(U, t) =
U̇(t)− f(U(t), t), defined on the open intervals of the partitions ∪jIij as

Ri(U, t) = U̇i(t)− fi(U(t), t), t ∈ (ki,j−1, kij),

j = 1, . . . ,Mi, i = 1, . . . , N . Assume also that U is right-continuous at T . Then the
error e = U − u satisfies

LϕT ,g(e) ≡ (e(T ), ϕT ) +

∫ T

0

(e, g) dt =

N∑
i=1

Mi∑
j=1

[∫
Iij

Ri(U, ·)ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)

]
.

(6.4)

Proof. By the definition of the dual problem, we have using (6.2)∫ T
0
(e, g) dt =

∫ T
0
(e,−ϕ̇− J∗(u, U, ·)ϕ) dt

=
∑

ij

∫
Iij

−eiϕ̇i dt+
∫ T
0
(−J(u, U, ·)e, ϕ) dt

=
∑

ij

∫
Iij

−eiϕ̇i dt+
∫ T
0
(f(u, ·)− f(U, ·), ϕ) dt

=
∑

ij

∫
Iij

−eiϕ̇i dt+
∑

ij

∫
Iij

(fi(u, ·)− fi(U, ·))ϕi dt.
Integrating by parts, we get∫

Iij

−eiϕ̇i dt = ei(t
+
i,j−i)ϕ(ti,j−1)− ei(t

−
ij)ϕ(tij) +

∫
Iij

ėiϕi dt,

so that∑
ij

∫
Iij

−eiϕ̇i dt =
∑

ij [ei]i,j−1ϕi(ti,j−1)− (e(T−), ϕT ) +
∫ T
0
(ė, ϕ) dt

=
∑

ij [Ui]i,j−1ϕi(ti,j−1)− (e(T ), ϕT ) +
∫ T
0
(ė, ϕ) dt.

Thus, with LϕT ,g(e) = (e(T ), ϕT ) +
∫ T
0
(e, g) dt, we have

LϕT ,g(e) =
∑

ij

[∫
Iij

(ėi + fi(u, ·)− fi(U, ·))ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)
]

=
∑

ij

[∫
Iij

(U̇i − fi(U, ·))ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)
]

=
∑

ij

[∫
Iij
Ri(U, ·)ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)

]
,

which completes the proof.
We now apply this theorem to represent the error in various norms. As before,

we let ‖ · ‖ denote the Euclidean norm on R
N and define ‖v‖L1([0,T ],Rn) =

∫ T
0
‖v‖ dt.

Corollary 6.2. If ϕT = e(T )/‖e(T )‖ and g = 0, then

‖e(T )‖ =
N∑
i=1

Mi∑
j=1

[∫
Iij

Ri(U, ·)ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)

]
.(6.5)



1888 ANDERS LOGG

Corollary 6.3. If ϕT = 0 and g(t) = e(t)/‖e(t)‖, then

‖e‖L1([0,T ],RN ) =

N∑
i=1

Mi∑
j=1

[∫
Iij

Ri(U, ·)ϕi dt+ [Ui]i,j−1ϕi(ti,j−1)

]
.(6.6)

6.3. Galerkin errors. To obtain expressions for the Galerkin errors, i.e., the
errors of the mcG(q) or mdG(q) approximations, assuming exact quadrature and exact
solution of the discrete equations, we use two ingredients: the error representation
of Theorem 6.1 and the Galerkin orthogonalities, (4.4) and (4.9). We first prove the
following interpolation estimate.
Lemma 6.4. If f ∈ Cq+1([a, b]), then there is a constant Cq, depending only on

q, such that

|f(x)− π[q]f(x)| ≤ Cqk
q+1 1

k

∫ b

a

|f (q+1)(y)| dy ∀x ∈ [a, b],(6.7)

where π[q]f(x) is the qth-order Taylor expansion of f around x0 = (a+b)/2, k = b−a,
and Cq = 1/(2qq!).

Proof. Using Taylor’s formula with the remainder in integral form, we have

|f(x)− π[q]f(x)| =
∣∣∣∣∣ 1q!
∫ x

x0

f (q+1)(y)(y − x0)
(q) dy

∣∣∣∣∣
≤ 1

2qq!
kq+1 1

k

∫ b

a

|f (q+1)(y)| dy.

Note that since we allow the polynomial degree to change between different com-
ponents and between different intervals, the interpolation constant will change in the
same way. We thus have Cqi = Cqi(t) = Cqij for t ∈ Iij .

We can now prove a posteriori error estimates for the mcG(q) and mdG(q) meth-
ods. The estimates come in a number of different versions. We typically use E2 or E3

to adaptively determine the time-steps and E0 or E1 to evaluate the error. The quan-
tities E4 and E5 may be used for qualitative estimates of error growth. We emphasize
that all of the estimates derived in Theorems 6.5 and 6.6 below may be of use in an
actual implementation, ranging from the very sharp estimate E0 containing only local
quantities to the more robust estimate E5 containing only global quantities.
Theorem 6.5. The mcG(q) method satisfies the following estimates:

|LϕT ,g(e)| = E0 ≤ E1 ≤ E2 ≤ E3 ≤ E4(6.8)

and

|LϕT ,g(e)| ≤ E2 ≤ E5,(6.9)

where

E0 =
∣∣∣∑N

i=1

∑Mi

j=1

∫
Iij
Ri(U, ·)(ϕi − πkϕi) dt

∣∣∣ ,
E1 =

∑N
i=1

∑Mi

j=1

∫
Iij

|Ri(U, ·)||ϕi − πkϕi| dt,
E2 =

∑N
i=1

∑Mi

j=1 Cqij−1k
qij+1
ij rijs

[qij ]
ij ,

E3 =
∑N

i=1 S
[qi]
i max[0,T ] {Cqi−1k

qi
i ri} ,

E4 = S[q],1
√
N maxi,[0,T ] {Cqi−1k

qi
i ri} ,

E5 = S[q],2‖Cq−1k
qR(U, ·)‖L2(RN×[0,T ]),

(6.10)
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with Cq as in Lemma 6.4, ki(t) = kij, ri(t) = rij, and s
[qi]
i (t) = s

[qij ]
ij for t ∈ Iij,

rij = 1
kij

∫
Iij

|Ri(U, ·)| dt, s
[qij ]
ij = 1

kij

∫
Iij

|ϕ(qij)| dt,
S

[qi]
i =

∫ T
0
|ϕ(qi)

i | dt, S[q],1 =
∫ T
0
‖ϕ(q)‖ dt,

S[q],2 =
(∫ T

0
‖ϕ(q)‖2 dt

)1/2

,

(6.11)

and where πkϕ is any test space approximation of the dual solution ϕ. Expressions
such as Cq−1k

qR are defined componentwise, i.e., (Cq−1k
qR(U, ·))i = Cqij−1k

qij
ij Ri(U, ·)

for t ∈ Iij.
Proof. Using the error representation of Theorem 6.1 and the Galerkin orthogo-

nality (4.4), noting that the jump terms disappear since U is continuous, we have

|LϕT ,g(e)| =
∣∣∣∣∣∣
N∑
i=1

Mi∑
j=1

∫
Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣∣∣∣∣∣ = E0,

where πkϕ is any test space approximation of ϕ. By the triangle inequality, we have

E0 ≤
N∑
i=1

Mi∑
j=1

∫
Iij

|Ri(U, ·)(ϕi − πkϕi)| dt = E1.

Choosing πkϕi as in Lemma 6.4 on every interval Iij , we have

E1 ≤
∑
ij

Cqij−1k
qij
ij

∫
Iij

|Ri(U, ·)| dt 1

kij

∫
Iij

|ϕ(qij)
i | dt

=
∑
ij

Cqij−1k
qij+1
ij rijs

[qij ]
ij = E2.

Continuing, we have

E2 ≤ ∑N
i=1 max[0,T ] {Cqi−1k

qi
i ri}

∑Mi

j=1 kijs
[qij ]
ij

=
∑N

i=1 max[0,T ] {Cqi−1k
qi
i ri}

∑Mi

j=1

∫
Iij

|ϕ(qij)
i | dt

=
∑N

i=1 max[0,T ] {Cqi−1k
qi
i ri}

∫ T
0
|ϕ(qi)

i | dt
=

∑N
i=1 S

[qi]
i max[0,T ] {Cqi−1k

qi
i ri} = E3,

and, finally,

E3 ≤ maxi,[0,T ] {Cqi−1k
qi
i ri}

∑N
i=1

∫ T
0
|ϕ(qi)

i | dt
≤ maxi,[0,T ] {Cqi−1k

qi
i ri}

√
N
∫ T
0
‖ϕ(q)‖ dt

= maxi,[0,T ] {Cqi−1k
qi
i ri}

√
NS[q],1 = E4.

As an alternative we can use Cauchy’s inequality in a different way. Continuing from
E2, we have

E2 =
∑N

i=1

∑Mi

j=1 Cqij−1k
qij+1
ij rijs

[qij ]
ij

=
∑N

i=1

∑Mi

j=1 Cqij−1k
qij
ij s

[qij ]
ij

∫
Iij

|Ri(U, ·)| dt
=

∑N
i=1

∫ T
0
Cqi−1k

qi
i |Ri(U, ·)|s[qi]i dt

=
∫ T
0
(Cq−1k

q|R(U, ·)|, s[q]) dt
≤ ∫ T

0
‖Cq−1k

qR(U, ·)‖‖s[q]‖ dt
≤

(∫ T
0
‖Cq−1k

qR(U, ·)‖2 dt
)1/2 (∫ T

0
‖s[q]‖2 dt

)1/2

,
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where |R(U, ·)| denotes the vector-valued function with components |R|i = |Ri| =
|Ri(U, ·)|. Noting now that s is the L2-projection of |ϕ(q)| onto the piecewise constants
on the partition, we have

(∫ T

0

‖s[q]‖2 dt

)1/2

≤
(∫ T

0

‖ϕ(q)‖2 dt

)1/2

,

so that

|LϕT ,g(e)| ≤ ‖Cq−1k
qR(U, ·)‖L2(RN×[0,T ])‖ϕ[q]‖L2(RN×[0,T ]) = E5,

completing the proof.

The proof of the estimates for the mdG(q) method is obtained similarly. Since
in the discontinuous method the test functions are on every interval of one degree
higher order than the test functions in the continuous method, we can choose a better
interpolant. Thus, in view of Lemma 6.4, we obtain an extra factor kij in the error
estimates.

Theorem 6.6. The mdG(q) method satisfies the following estimates:

|LϕT ,g(e)| = E0 ≤ E1 ≤ E2 ≤ E3 ≤ E4(6.12)

and

|LϕT ,g(e)| ≤ E2 ≤ E5,(6.13)

where

E0 =
∣∣∣∑ij

∫
Iij
Ri(U, ·)(ϕi − πkϕi) dt+ [Ui]i,j−1(ϕi(ti,j−1)− πkϕi(t

+
i,j−1))

∣∣∣ ,
E1 =

∑
ij

∫
Iij

|Ri(U, ·)||ϕi − πkϕi| dt+ |[Ui]i,j−1||ϕi(ti,j−1)− πkϕi(t
+
i,j−1)|,

E2 =
∑N

i=1

∑Mi

j=1 Cqijk
qij+2
ij r̄ijs

[qij+1]
ij ,

E3 =
∑N

i=1 S
[qi+1]
i max[0,T ]

{
Cqik

qi+1
i r̄i

}
,

E4 = S[q+1],1
√
N maxi,[0,T ]

{
Cqik

qi+1
i r̄i

}
,

E5 = S[q+1],2‖Cqk
q+1R̄(U, ·)‖L2(RN×[0,T ]),

(6.14)

with

r̄ij =
1

kij

∫
Iij

|Ri(U, ·)| dt+ 1

kij
|[Ui]i,j−1|, R̄i(U, ·) = |Ri(U, ·)|+ 1

kij
|[Ui]i,j−1|,

(6.15)

and we otherwise use the notation of Theorem 6.5.

Proof. As in the proof for the continuous method, we use the error representation
of Theorem 6.1 and the Galerkin orthogonality (4.9) to get

|LϕT ,g(e)| =
∣∣∣∣∣∣
∑
ij

∫
Iij

Ri(U, ·)(ϕi − πkϕi) dt+ [Ui]i,j−1(ϕi(ti,j−1)− πkϕi(t
+
i,j−1))

∣∣∣∣∣∣ = E0.
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By Lemma 6.4 we obtain

E0 ≤ ∑
ij

∫
Iij

|Ri(U, ·)||ϕi − πkϕi| dt+ |[Ui]i,j−1||ϕi(ti,j−1)− πkϕi(t
+
i,j−1)| = E1

≤ ∑
ij Cqijk

qij+1
ij

(∫
Iij

|Ri(U, ·)| dt+ |[Ui]i,j−1|
)

1
kij

∫
Iij

|ϕ(qij+1)
i | dt

≤ ∑
ij Cqijk

qij+2
ij r̄ijs

[qij+1]
ij = E2.

Continuing now in the same way as for the continuous method, we have E2 ≤ E3 ≤ E4

and E2 ≤ E5.
Remark 6.1. When evaluating the expressions E0 or E1, the interpolant πkϕ does

not have to be chosen as in Lemma 6.4. This is only a convenient way to obtain the
interpolation constant. In section 6.6 below we discuss a more convenient choice of
interpolant.

Remark 6.2. If we replace 1
kij

∫
Iij

|Ri| dt by maxIij |Ri|, we may replace Cq by a

smaller constant C ′
q. The value of the constant thus depends on the specific way the

residual is measured.

6.4. Computational errors. The error estimates of Theorems 6.5 and 6.6 are
based on the Galerkin orthogonalities (4.4) and (4.9). If the corresponding discrete
equations are not solved exactly, there will be an additional contribution to the total
error. Although Theorem 6.1 is still valid, the first steps in Theorems 6.5 and 6.6 are
not. Focusing on the continuous method, the first step in the proof of Theorem 6.5
is the subtraction of a test space interpolant. This is possible, since by the Galerkin
orthogonality we have

N∑
i=1

Mi∑
j=1

∫
Iij

Ri(U, ·)πkϕi dt = 0

for all test space interpolants πkϕ. If the residual is no longer orthogonal to the test
space, we add and subtract this term to get to the point where the implications of
Theorem 6.5 are valid for one of the terms. Assuming now that ϕ varies slowly on
each subinterval, we estimate the remaining extra term as follows:

EC =
∣∣∣∑N

i=1

∑Mi

j=1

∫
Iij
Ri(U, ·)πkϕi dt

∣∣∣ ≤∑N
i=1

∑Mi

j=1

∣∣∣∫Iij Ri(U, ·)πkϕi dt
∣∣∣

≈ ∑N
i=1

∑Mi

j=1 kij |ϕ̄ij | 1
kij

∣∣∣∫Iij Ri(U, ·) dt
∣∣∣ =∑N

i=1

∑Mi

j=1 kij |ϕ̄ij ||RC
ij |

≤ ∑N
i=1 S̄

[0]
i maxj |RC

ij |,

(6.16)

where ϕ̄ is a piecewise constant approximation of ϕ (using, say, the mean values on
the local intervals),

S̄
[0]
i =

Mi∑
j=1

kij |ϕ̄ij | ≈
∫ T

0

|ϕi| dt = S
[0]
i(6.17)

is a stability factor, and we define the discrete or computational residual as

RC
ij =

1

kij

∫
Iij

Ri(U, ·) dt = 1

kij

(
(ξijq − ξij0)−

∫
Iij

fi(U, ·) dt
)
.(6.18)

More precise estimates may be used if needed.
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For the mdG(q) method, the situation is similar with the computational residual
now defined as

RC
ij =

1

kij

(
(ξijq − ξ−ij0)−

∫
Iij

fi(U, ·) dt
)
.(6.19)

Thus, to estimate the computational error, we evaluate the computational resid-
uals and multiply with the computed stability factors.

6.5. Quadrature errors. We now extend our analysis to take into account also

quadrature errors. We denote integrals evaluated by quadrature with
∫̃
. Starting

from the error representation as before, we have for the mcG(q) method

LϕT ,g(e) =
∫ T
0
(R,ϕ) dt

=
∫ T
0
(R,ϕ− πkϕ) dt+

∫ T
0
(R, πkϕ) dt

=
∫ T
0
(R,ϕ− πkϕ) dt+

∫̃ T
0
(R, πkϕ) dt+

[∫ T
0
(R, πkϕ) dt−

∫̃ T
0
(R, πkϕ) dt

]

=
∫ T
0
(R,ϕ− πkϕ) dt+

∫̃ T
0
(R, πkϕ) dt+

(∫̃ T
0
− ∫ T

0

)
(f(U, ·), πkϕ) dt

(6.20)

if the quadrature is exact for U̇v when v is a test function. The first term of this
expression was estimated in Theorem 6.5 and the second term is the computational

error discussed previously (where
∫̃

denotes that in a real implementation, (6.18) is
evaluated using quadrature). The third term is the quadrature error, which may be
nonzero even if f is linear, if the time-steps are different for different components. To
estimate the quadrature error, notice that(∫̃ T

0
− ∫ T

0

)
(f(U, ·), πkϕ) dt =

∑
ij

(∫̃
Iij

− ∫
Iij

)
fi(U, ·)πkϕi dt

≈ ∑
ij kijϕ̄ijRQ

ij ≤
∑N

i=1 S̄
[0]
i maxj |RQ

ij |,
(6.21)

where {S̄[0]
i }Ni=1 are the same stability factors as in the estimate for the computational

error and

RQ
ij =

1

kij

(
˜∫
Iij

fi(U, ·) dt−
∫
Iij

fi(U, ·) dt
)

(6.22)

is the quadrature residual. A similar estimate holds for the mdG(q) method.
We now make a few comments on how to estimate the quadrature residual. The

Lobatto quadrature of the mcG(q) method is exact for polynomials of degree less than

or equal to 2q − 1, and we have an order 2q estimate for
∫̃ − ∫ in terms of f (2q), and

so we make the assumption RQ
ij ∝ k

2qij
ij . If, instead of using the standard quadrature

rule over the interval with quadrature residual RQ0
ij , we divide the interval into 2m

parts and use the quadrature on every interval, summing up the result, we will get a
different quadrature residual, namely

RQm =
1

k
C2m(k/2m)2q+1 = 2m(−2q)Ck2q = 2−2qRQm−1 ,(6.23)
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where we have dropped the ij subindices. Thus, since |RQm | ≤ |RQm − RQm+1 | +
|RQm+1 | = |RQm −RQm+1 |+ 2−2q|RQm |, we have the estimate

|RQm | ≤ 1

1− 2−2q
|RQm −RQm+1 |.(6.24)

Thus, by computing the integrals at two or more dyadic levels, we may estimate
quadrature residuals and thus the quadrature error.

For the mdG(q) method the only difference is that the basic quadrature rule is
one order better, i.e., instead of 2q we have 2q + 1, so that

|RQm | ≤ 1

1− 2−1−2q
|RQm −RQm+1 |.(6.25)

6.6. Evaluating EG. We now present an approach to estimating the quantity∫ T
0
(R(U, ·), ϕ − πkϕ) dt by direct evaluation, with ϕ a computed dual solution and

πkϕ a suitably chosen interpolant. In this way we avoid introducing interpolation
constants and computing derivatives of the dual. Note, however, that although we do
not explicitly compute any derivatives of the dual, the regularity assumed in section
6.1 for the dual solution is still implicitly required for the computed quantities to
make sense. Starting now with

EG =

∣∣∣∣∣∣
N∑
i=1

Mi∑
j=1

∫
Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣∣∣∣∣∣(6.26)

for the continuous method, we realize that the best possible choice of interpolant, if
we want to prevent cancellation, is to choose πkϕ such that Ri(U, ·)(ϕi − πkϕi) ≥ 0
(or ≤ 0) on every local interval Iij . With such a choice of interpolant, we would have

EG =

∣∣∣∣∣∣
N∑
i=1

Mi∑
j=1

∫
Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣∣∣∣∣∣ =
N∑
i=1

Mi∑
j=1

αij

∫
Iij

|Ri(U, ·)(ϕi − πkϕi)| dt

(6.27)

with αij = ±1. The following lemmas give us an idea of how to choose the interpolant.
Lemma 6.7. If, for i = 1, . . . , N , fi = fi(U(t), t) = fi(Ui(t), t) and fi is linear

or, alternatively, f = f(U(t), t) is linear and all components have the same time-
steps and order, then every component Ri(U, ·) of the mcG(q) residual is a Legendre
polynomial of order qij on Iij, for j = 1, . . . ,Mi.

Proof. On every interval Iij the residual component Ri(U, ·) is orthogonal to
Pqij−1(Iij). Since the conditions assumed in the statement of the lemma guarantee
that the residual is a polynomial of degree qij on every interval Iij , it is clear that
on every such interval it is the qijth-order Legendre polynomial (or a multiple
thereof).

Even if the rather strict conditions of this lemma do not hold, we can say some-
thing similar. The following lemma restates this property in terms of approximations
of the residual.
Lemma 6.8. Let R̃ be the local L2-projection of the mcG(q) residual R onto

the trial space, i.e., R̃i(U, ·)|Iij is the L2(Iij)-projection onto Pqij (Iij) of Ri(U, ·)|Iij ,
j = 1, . . . ,Mi, i = 1, . . . , N . Then every R̃i(U, ·)|Iij is a Legendre polynomial of
degree qij.
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Proof. Since R̃i(U, ·) is the L2-projection of Ri(U, ·) onto Pqij (Iij) on Iij , we have∫
Iij

R̃i(U, ·)v dt =
∫
Iij

Ri(U, ·)v dt = 0

for all v ∈ Pqij−1(Iij), so that R̃i(U, ·) is the qijth-order Legendre polynomial on
Iij .

To prove the corresponding results for the discontinuous method, we first note
some basic properties of Radau polynomials.
Lemma 6.9. Let Pq be the qth-order Legendre polynomial on [−1, 1]. Then the

qth-order Radau polynomial, Qq(x) = (Pq(x) + Pq+1(x))/(x + 1), has the following
property:

I =

∫ 1

−1

Qq(x)(x+ 1)p dx = 0(6.28)

for p = 1, . . . , q. Conversely, if f is a polynomial of degree q on [−1, 1] and has the

property (6.28), i.e.,
∫ 1

−1
f(x)(x + 1)p dx = 0 for p = 1, . . . , q, then f is a Radau

polynomial.
Proof. We can write the qth-order Legendre polynomial on [−1, 1] as Pq(x) =

1
q!2qD

q((x2 − 1)q). Thus, integrating by parts, we have

I =
∫ 1

−1
Pq(x)+Pq+1(x)

x+1 (x+ 1)p dx

= 1
q!2q

∫ 1

−1
Dq((x2 − 1)q + x(x2 − 1)q)(x+ 1)p−1 dx

= 1
q!2q

∫ 1

−1
Dq((x+ 1)(x2 − 1)q)(x+ 1)p−1 dx

= 1
q!2q (−1)p

∫ 1

−1
Dq−p((x+ 1)(x2 − 1)q)Dp(x+ 1)p−1 dx = 0,

since Dl((x + 1)(x2 − 1)q) is zero at −1 and 1 for l < q. Assume now that f is
a polynomial of degree q on [−1, 1] with the property (6.28). Since {(x + 1)p}qp=1

are linearly independent on [−1, 1] and orthogonal to the Radau polynomial Qq,
{Qq(x), (x + 1), (x + 1)2, . . . , (x + 1)q} form a basis for Pq([−1, 1]). If then f is
orthogonal to the subspace spanned by {(x+1)p}qp=1, we must have f = cQq for some
constant c, and the proof is complete.
Lemma 6.10. If, for i = 1, . . . , N , fi = fi(U(t), t) = fi(Ui(t), t) and fi is linear

or, alternatively, f = f(U(t), t) is linear and all components have the same time-
steps and order, then every component Ri(U, ·) of the mdG(q) residual is a Radau
polynomial of order qij on Iij for j = 1, . . . ,Mi.

Proof. Note first that by assumption the residual Ri(U, ·) is a polynomial of degree
qij on Iij . By the Galerkin orthogonality, we have

0 =

∫
Iij

Ri(U, ·)v dt+ [Ui]i,j−1v(t
+
i,j−1) ∀v ∈ Pqij (Iij),

which holds especially for v(t) = (t − ti,j−1)
p with p = 1, . . . , q, for which the jump

terms disappear. Rescaling to [−1, 1], it follows from Lemma 6.9 that the residual
Ri(U, ·) must be a Radau polynomial on Iij .

Also for the discontinuous method there is a reformulation in terms of approxi-
mations of the residual.
Lemma 6.11. Let R̃ be the local L2-projection of the mdG(q) residual R onto

the trial space, i.e., R̃i(U, ·)|Iij is the L2(Iij)-projection onto Pqij (Iij) of Ri(U, ·)|Iij ,
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Fig. 6.1. The Legendre-polynomial residual of the mcG(q) method (left) and the Radau-
polynomial residual of the mdG(q) method (right), for polynomials of degree five, i.e., methods
of order 10 and 11, respectively.

j = 1, . . . ,Mi, i = 1, . . . , N . Then every R̃i(U, ·)|Iij is a Radau polynomial of degree
qij.

Proof. Since R̃i(U, ·) is the L2-projection of Ri(U, ·) onto Pqij (Iij) on Iij , it follows
from the Galerkin orthogonality that∫

Iij

R̃i(U, ·)v dt =
∫
Iij

Ri(U, ·)v dt = 0

for any v(t) = (t − ti,j−1)
p with 1 ≤ p ≤ q. From Lemma 6.9 it then follows that

R̃i(U, ·) is a Radau polynomial on Iij .
We thus know that the mcG(q) residuals are (in the sense of Lemma 6.8) Legendre

polynomials on the local intervals and that the mdG(q) residuals are (in the sense of
Lemma 6.11) Radau polynomials. This is illustrated in Figure 6.1.

From this information about the residual, we now choose the interpolant. Assume
that the polynomial order of the method on some interval is q for the continuous
method. Then the dual should be interpolated by a polynomial of degree q−1, i.e., we
have freedom to interpolate at exactly q points. Since a qth-order Legendre polynomial
has q zeros on the interval, we may choose to interpolate the dual exactly at those
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points where the residual is zero. This means that if the dual can be approximated
well enough by a polynomial of degree q, the product Ri(U, ·)(ϕi − πkϕi) does not
change sign on the interval.

For the discontinuous method, we should interpolate the dual with a polynomial
of degree q, i.e., we have freedom to interpolate at exactly q + 1 points. To get rid
of the jump terms that are present in the error representation for the discontinuous
method, we want to interpolate the dual at the beginning of every interval. This
leaves q degrees of freedom. We then choose to interpolate the dual at the q points
within the interval where the Radau polynomial is zero.

As a result, we may choose the interpolant in such a way that we have

|LϕT ,g(e)| =
∣∣∣∣∣∣
∑
ij

∫
Iij

Ri(U, ·)(ϕi − πkϕi) dt

∣∣∣∣∣∣ =
∑
ij

αij

∫
Iij

|Ri(U, ·)(ϕi − πkϕi)| dt,

(6.29)

with αij = ±1, for both the mcG(q) method and the mdG(q) method (but the
interpolants are different). Notice that the jump terms for the discontinuous method
have disappeared.

There is now a simple way to compute the integrals
∫
Iij
Ri(U, ·)(ϕi − πkϕi) dt.

Since the integrands are, in principle, products of two polynomials for which we know
the positions of the zeros, the product is a polynomial with known properties. There
are then constants Cq (which can be computed numerically), depending on the order
and the method, such that∫

Iij

|Ri(U, ·)(ϕi − πkϕi)| dt = Cqijkij |Ri(U, t
−
ij)||ϕi(tij)− πkϕi(t

−
ij)|.(6.30)

Finally, note that there are “computational” counterparts also for the estimates
of type E3 in Theorems 6.5 and 6.6, namely

|LϕT ,g(e)| ≤ ∑
ij

∫
Iij

|Ri(U, ·)||ϕi − πkϕi| dt
=

∑
ij C

′
qijk

qij
ij |Ri(U, t

−
ij)|
∫
Iij

1

k
qij
ij

|ϕi − πkϕi| dt
≤ ∑N

i=1 S̃imaxj=1,... ,Mi
C ′
qijk

qij
ij |Ri(U, t

−
ij)|,

(6.31)

with S̃i =
∫ T
0

1
k
qi
i

|ϕi − πkϕi| dt for the continuous method and similarly for the

discontinuous method.

6.7. The total error. The total error is composed of three parts—the Galerkin
error, EG, the computational error, EC and the quadrature error, EQ:

|LϕT ,g(e)| ≤ EG + EC + EQ.(6.32)

As an example, choosing estimate E3 of Theorems 6.5 and 6.6 we have the following
(approximate) error estimate for the mcG(q) method:

|LϕT ,g(e)| ≤
N∑
i=1

[
S

[qi]
i max

[0,T ]
{Cqi−1k

qi
i ri}+ S̄

[0]
i max

[0,T ]
|RC

i |+ S̄
[0]
i max

[0,T ]
|RQ

i |
]
;(6.33)
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for the mdG(q) method we have

|LϕT ,g(e)| ≤
N∑
i=1

[
S

[qi+1]
i max

[0,T ]

{
Cqik

qi+1
i r̄i

}
+ S̄

[0]
i max

[0,T ]
|RC

i |+ S̄
[0]
i max

[0,T ]
|RQ

i |
]
.

(6.34)

These estimates containing Galerkin errors, computational errors, and quadrature
errors also include numerical round-off errors (included in the computational error).
Modelling errors could also be similarly accounted for since these are closely related
to quadrature errors, in that both errors can be seen as arising from integrating the
wrong right-hand side.

The true global error may thus be estimated in terms of computable stability
factors and residuals. We expect the estimate for the Galerkin error, EG, to be quite
sharp, while EC and EQ may be less sharp. Even sharper estimates are obtained
using estimates E0, E1, or E2 of Theorems 6.5 and 6.6.

6.8. An a posteriori error estimate for the dual. We conclude this section
by proving a computable a posteriori error estimate for the dual problem. To compute
the stability factors used in the error estimates presented above, we solve the dual
problem numerically, and we thus face the problem of estimating the error in the
stability factors.

To demonstrate how relative errors of stability factors can be estimated using the
same technique as above, we compute the relative error for the stability factor Sϕ(T ),
defined as

Sϕ(T ) = sup
‖ϕ(T )‖=1

∫ T

0

‖ϕ‖ dt(6.35)

for a computed approximation Φ of the dual solution ϕ.

To estimate the relative error of the stability factor, we use the error representa-
tion of Theorem 6.1 to represent the L1([0, T ],RN )-error of Φ in terms of the residual
of Φ and the dual of the dual, ω. In [28] we prove the following lemma, from which
the estimate follows.

Lemma 6.12. Let ϕ be the dual solution with stability factor Sϕ(t), i.e., with
data ‖ϕ(t)‖ = 1 specified at time t, and let ω be the dual of the dual. We then have
the following estimate:

‖ω(t)‖ ≤ Sϕ(T − t) ∀t ∈ [0, T ].(6.36)

Theorem 6.13. Let Φ be a continuous approximation of the dual solution with
residual RΦ, and assume that Sϕ(t)/Sϕ(T ) is bounded by C on [0, T ]. Then the
following estimate holds for the relative error of the stability factor SΦ(T ):

|SΦ(T )− Sϕ(T )|/Sϕ(T ) ≤ C

∫ T

0

‖RΦ‖ dt,(6.37)

and for many problems we may take C = 1.

Proof. By Corollary 6.3, we have an expression for the L1([0, T ],RN )-error of the
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dual, so that

|SΦ(T )− Sϕ(T )| =
∣∣∣∫ T0 ‖Φ‖ dt− ∫ T

0
‖ϕ‖ dt

∣∣∣
=

∣∣∣∫ T0 (‖Φ‖ − ‖ϕ‖) dt
∣∣∣ ≤ ∫ T0 ‖Φ− ϕ‖ dt

= ‖Φ− ϕ‖L1([0,T ],Rn) =
∫ T
0
(RΦ, ω(T − ·)) dt

≤ ∫ T
0
‖RΦ‖‖ω(T − ·)‖ dt.

(6.38)

With C defined as above it now follows by Lemma 6.12 that

|SΦ(T )− Sϕ(T )| ≤ C

∫ T

0

‖RΦ‖ dt Sϕ(T ),

and the proof is complete.
Remark 6.3. We also have to take into account quadrature errors when evaluating

(6.35). This can be done in many ways; see, e.g., [9].

Appendix A. Derivation of the methods.
This section contains some details left out of the discussion of section 4.

A.1. The mcG(q) method. To rewrite the local problem in a more explicit
form, let {sn}qn=0 be a set of nodal points on [0, 1], with s0 = 0 and sq = 1. A good
choice for the cG(q) method is the Lobatto points of [0, 1]. Now, let τij be the linear
mapping from the interval Iij to (0, 1], defined by

τij(t) =
t− ti,j−1

tij − ti,j−1
,(A.1)

and let {λ[q]
n }qn=0 be the {sn}qn=0 Lagrange basis functions for Pq([0, 1]) on [0, 1], i.e.,

λ[q]
n (s) =

(s− s0) · · · (s− sn−1)(s− sn+1) · · · (s− sq)

(sn − s0) · · · (sn − sn−1)(sn − sn+1) · · · (sn − sq)
.(A.2)

We can then express Ui on Iij in the form

Ui(t) =

q∑
n=0

ξijnλ
[qij ]
n (τij(t)),(A.3)

and choosing the λ
[q−1]
m as test functions we can formulate the local problem (4.3) as

follows: Find {ξijn}qijn=0, with ξij0 = ξi,j−1,qi,j−1 , such that for m = 0, . . . , qij − 1

∫
Iij

qij∑
n=0

ξijn
d

dt

[
λ[qij ]
n (τij(t))

]
λ[qij−1]
m (τij(t)) dt =

∫
Iij

fi(U(t), t)λ[qij−1]
m (τij(t)) dt.

(A.4)

To simplify the notation, we drop the ij subindices and assume that the time-interval
is [0, k], keeping in mind that, although not visible, all other components are present
in f . We thus seek to determine the coefficients {ξn}qn=1 with ξ0 given, such that for
m = 1, . . . , q we have

q∑
n=0

ξn
1

k

∫ k

0

λ̇[q]
n (τ(t))λ

[q−1]
m−1 (τ(t)) dt =

∫ k

0

fλ
[q−1]
m−1 (τ(t)) dt,(A.5)
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or simply

q∑
n=1

a[q]
mnξn = bm,(A.6)

where

a[q]
mn =

∫ 1

0

λ̇[q]
n (t)λ

[q−1]
m−1 (t) dt(A.7)

and

bm =

∫ k

0

fλ
[q−1]
m−1 (τ(t)) dt− am0ξ0.(A.8)

We explicitly compute the inverse Ā[q] = (ā
[q]
mn) of the matrix A[q] = (a

[q]
mn). Thus,

switching back to the full notation, we get

ξijm = −ξ0
q∑

n=1

ā[q]
mnan0 +

∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(A.9)

where the weight functions {w[q]
m }qm=1 are given by

w[q]
m =

q∑
n=1

ā[q]
mnλ

[q−1]
n−1 , m = 1, . . . , q.(A.10)

Following Lemma A.1 below, this relation may be somewhat simplified.
Lemma A.1. For the mcG(q) method, we have

q∑
n=1

ā[q]
mnan0 = −1.

Proof. Assume the interval to be [0, 1]. The value is independent of f so we may
take f = 0. We thus want to prove that if f = 0, then ξn = ξ0 for n = 1, . . . , q,

i.e., U = U0 on [0, 1] since {λ[q]
n }qn=0 is a nodal basis for Pq([0, 1]). Going back to the

Galerkin orthogonality (4.4), this amounts to showing that if∫ 1

0

U̇v dt = 0 ∀v ∈ Pq−1([0, 1]),

with U ∈ Pq([0, 1]), then U is constant on [0, 1]. This follows by taking v = U̇ .

Thus, ξn = ξ0 for n = 1, . . . , q, so that the value of
∑q

n=1 ā
[q]
mnan0 must be −1. This

completes the proof.
The mcG(q) method thus reads as follows: For every local interval Iij , find

{ξijn}qijn=0, with ξij0 = ξi,j−1,qi,j−1 , such that

ξijm = ξij0 +

∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt, m = 1, . . . , qij ,(A.11)

for certain weight functions {w[q]
n }qm=1 ⊂ Pq−1(0, 1), and where the initial condition

is specified by ξi00 = ui(0) for i = 1, . . . , N .
The weight functions may be computed analytically for small q, and for general

q they are easy to compute numerically.
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A.2. The mdG(q) method. We now make the same ansatz as for the contin-
uous method,

Ui(t) =

q∑
n=0

ξijnλ
[qij ]
n (τij(t)),(A.12)

where the difference is that we now have q + 1 degrees of freedom on every interval,
since we no longer have the continuity requirement for the trial functions. We make
the assumption that the nodal points for the nodal basis functions are chosen so that

sq = 1,(A.13)

i.e., the end-point of every subinterval is a nodal point for the basis functions.
With this ansatz, we get the following set of equations for determining {ξijn}qijn=0:

(A.14)(
qij∑
n=0

ξijnλ
[qij ]
n (0)− ξ−ij0

)
λ[qij ]
m (0) +

∫
Iij

qij∑
n=0

ξijn
d

dt

[
λ[qij ]
n (τij(t))

]
λ[qij ]
m (τij(t)) dt

=

∫
Iij

fi(U(t), t)λ[qij ]
m (τij(t)) dt(A.15)

for m = 0, . . . , qij , where we use ξ−ij0 to denote ξi,j−1,qi,j−1
, i.e., the value at the right

end-point of the previous interval. To simplify the notation, we drop the subindices

ij again and rewrite to [0, k]. We thus seek to determine the coefficients {ξn}qn=0 such
that for m = 0, . . . , q we have

(A.16)(
q∑

n=0

ξnλ
[q]
n (0)− ξ−0

)
λ[q]
m (0) +

q∑
n=0

ξn
1

k

∫ k

0

λ̇[q]
n (τ(t))λ[q]

m (τ(t)) dt =

∫ k

0

fλ[q]
m (τ(t)) dt,

or simply

q∑
n=0

a[q]
mnξn = bm,(A.17)

where

a[q]
mn =

∫ 1

0

λ̇[q]
n (t)λ[q]

m (t) dt+ λ[q]
n (0)λ[q]

m (0)(A.18)

and

b[q]m =

∫ k

0

fλ[q]
m (τ(t)) dt+ ξ−0 λ

[q]
m (0).(A.19)

Now, let A[q] be the (q+1)×(q+1) matrix A[q] = (a
[q]
mn) with inverse Ā[q] = (ā

[q]
mn).

Then, switching back to the full notation, we have

ξijm = ξ−ij0

q∑
n=0

ā[q]
mnλ

[q]
n (0) +

∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt, m = 0, . . . , qij ,

(A.20)
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where the weight functions {w[q]
n }qn=0 are given by

w[q]
m =

q∑
n=0

ā[q]
mnλ

[q]
n , m = 0, . . . , q.(A.21)

As for the continuous method, this may be somewhat simplified.
Lemma A.2. For the mdG(q) method, we have

q∑
n=0

ā[q]
mnλ

[q]
n (0) = 1.

Proof. As in the proof for the mcG(q) method, assume that the interval is [0, 1].
Since the value of the expression is independent of f we can take f = 0. We thus want
to prove that if f = 0, then the solution U is constant. By the Galerkin orthogonality,
we have

[U ]0v(0) +

∫ 1

0

U̇v dt = 0 ∀v ∈ Pq(0, 1),

with U ∈ Pq(0, 1). Taking v = U − U(0−), we have

0 = ([U ]0)
2 +

∫ 1

0
U̇(U − U(0−)) dt = ([U ]0)

2 + 1
2

∫ 1

0
d
dt (U − U(0−))2 dt

= 1
2 (U(0+)− U(0−))2 + 1

2 (U(1)− U(0−))2,

so that [U ]0 = 0. Now take v = U̇ . This gives
∫ 1

0
(U̇)2 dt = 0. Since then both

[U ]0 = 0 and U̇ = 0 on [0, 1], U is constant and equal to U(0−), and the proof is
complete.

The mdG(q) method thus reads as follows: For every local interval Iij , find
{ξijn}qijn=0, such that for m = 0, . . . , qij we have

ξijm = ξ−ij0 +
∫
Iij

w[qij ]
m (τij(t)) fi(U(t), t) dt(A.22)

for certain weight functions {w[q]
n }qn=0 ⊂ Pq(0, 1).
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University of Technology, Göteborg, Sweden, 1998; also available online from http://
www.phi.chalmers.se/preprints/abstracts/preprint-2000-02.html.

[28] A. Logg, Multi-Adaptive Galerkin Methods for ODES I: Theory & Algorithms, Chalmers
Finite Element Center Preprint 2001–09, http://www.phi.chalmers.se/preprints/abstracts/
preprint-2000-09.html (25 February 2001).

[29] A. Logg, Multi-adaptive Galerkin methods for ODES II: Implementation and applications,
SIAM J. Sci. Comput., submitted.

[30] A. Logg, Tanganyika, version 1.2.1, http://www.phi.chalmers.se/tanganyika/ (10 May 2001).
[31] J. Makino and S. Aarseth, On a hermite integrator with Ahmad–Cohen scheme for gravita-

tional many-body problems, Publ. Astron. Soc. Japan, 44 (1992), pp. 141–151.
[32] K.-S. Moon, A. Szepessy, R. Tempone, and G. Zourakis, Adaptive Approximation of Dif-

ferential Equations Based on Global and Local Errors, preprint. TRITA-NA-0006 NADA,
KTH, Stockholm, Sweden, 2000.

[33] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with
locally varying time and space grids, Math. Comp., 41 (1983), pp. 321–336.

[34] L. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and Hall,
London, 1994.


