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1. INTRODUCTION

Projects such as the FEniCS form compiler (FFC) [Kirby and Logg 2006; 2007;
Logg 2007], Sundance [Long 2003; 2004; 2006], and deal.II [Bangerth et al.
2006] aim to automate important aspects of finite element computation. In the
case of FFC, low-level code is generated for the evaluation of element stiffness
matrices or their actions, together with the local-global mapping. The exis-
tence of such a compiler for variational forms naturally leads one to consider
an optimizing compiler for variational forms. What mathematical structure in
element-level computation is tedious for humans to exploit by hand, but possi-
ble for a computer to find? We have provided partial answers to this question
in a series of papers [Kirby et al. 2005; 2006; Kirby and Scott 2007]. These
ideas have been implemented in a prototype code called FErari, and we pro-
vide an empirical study of the optimizations implemented by FErari in this
article. Both FFC and FErari are part of the FEniCS project; for more infor-
mation about the software, we refer readers to the project Web page [Logg et al.
2007].

FFC takes as input a multilinear variational form and generates code for
evaluating this form over affine elements. The formation of the local stiffness
matrix on a single element is expressed as a linear transformation (known
at compile time) applied to a vector representing the geometry and coefficient
data (known only at runtime). The linear transformation depends on the varia-
tional form and finite element basis, but not on the mesh. This means that the
cost of generating and optimizing the code is independent of the size of mesh,
but depends strongly on the complexity of the variational form and polyno-
mial degree used. The generated code is completely unrolled. This internal
kernel is then called for each of the many elements of the mesh at runtime to
compute the global sparse matrix. FFC also supports a mode that calls level
2 BLAS [Dongarra et al. 1988] rather than generating unrolled code. This
typically gives comparable runtime performance and smaller executables.
However, the optimizations we consider here are only possible to apply in the
context of unrolled code.

To a user of FFC, the optimizations are invoked simply with a -O flag, which
turns on a call to FErari and thence a modified code generator. It is impor-
tant to note that the optimizations considered are similar, but typically beyond
the abilities of general-purpose compilers to detect. In assessing the efficacy
of these techniques at reducing runtime, we focus on the construction of the
sparse matrix and its matrix-free application for a variety of variational forms.
In particular, we study the “pure” effect of the FErari optimizations, as well as
the optimizations relative to the cost of inserting into a sparse-matrix data
structure.

While several fairly theoretical papers [Kirby et al. 2005; 2006; Kirby and
Scott 2007] have shown that reductions in arithmetic cost are possible to ob-
tain, there are only very limited tests of the practical impact of the proposed op-
timizations. With some notable exceptions, such as reported in Figure 9 later,
the optimizations provide somewhat disappointing empirical results, such as
only a few percent speedup. However, it is still important to include these tests
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in the literature to bring some completeness to the theoretical work. In many
cases, the poor speedups are due to local computation (what we optimize) be-
ing dominated by the cost of insertion into global sparse data structures. As
memory access is typically very slow compared to floating-point arithmetic,
this may not be surprising. However, it is possible that the optimizations con-
sidered here could perform better in practice in other situations with lower
memory traffic, such as element-by-element or static condensation techniques.
That said, one does obtain significant global speedups in some cases. For the
set of test cases examined in the following, we obtain a factor of 2.8 global
speedup for the assembly of the global sparse matrix of the weighted advection
operator for quartics on tetrahedra (Figure 9).

2. FINITE-ELEMENT ASSEMBLY AND THE ELEMENT TENSOR

In finite elements, the nonlinear and linear algebraic problems come from eval-
uating variational forms on the finite-element basis functions. In our work on
FFC and FErari, we have focused on evaluating multilinear forms over affine
elements, and we continue to do so here.

The typical example is the bilinear form for Poisson’s equation,

a(v, u) =

∫
�

∇v · ∇udx. (1)

If {φ j}
N
j=1 is a finite element basis defined on some triangulation T of the domain

�, the global stiffness matrix is

A i = a(φi1, φi2), (2)

where i = (i1, i2) is a multiindex.
The standard algorithm [Zienkiewicz et al. 1967; Hughes 1987; Langtangen

1999] for computing the matrix A is known as assembly; it is computed by
iterating over the cells of the mesh T and adding from each cell the local con-
tribution to the global sparse matrix A. A similar process can compute a global
action, in which A is applied to some vector u without explicitly forming A.

The integral defining a multilinear form a may be written as a sum of inte-
grals over the cells K of a triangulation T of the domain �. We have

a =
∑
K∈T

aK, (3)

and thus

A i =
∑
K∈T

aK(φi1, φi2 ). (4)

For Poisson’s equation, the element bilinear form aK is thus given by aK(v, u) =∫
K

∇v · ∇udx. Finite-element bases are constructed so that each aK is zero
except for a few basis functions.

For affine elements, as we consider here, the shape functions are constructed
once on a reference element K0 and mapped to each element of the mesh via an
affine mapping FK . In doing so, one must construct a “local-global mapping”
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Fig. 1. The (affine) mapping FK from a reference cell K0 to some cell K ∈ T .

that relates an ordering of the element-shape functions to the global-basis
functions. The contribution of element K to the global matrix A is then evalu-
ated in two stages. First, a dense element matrix is computed by evaluating aK

on the shape functions for K. We call this element matrix A K . Then, each entry
of A K is summed into the appropriate location in the global sparse matrix as
defined by the local-global mapping. The first stage is dominated by floating-
point computation; the second requires more substantial memory access.

Our work in Kirby and Logg [2006; 2007] has focused on a general para-
digm for efficiently constructing A K . It has long been known that precomput-
ing certain integrals on the reference element can speed-up computation of
the element tensor, especially for bilinear forms with straight-sided elements.
A general approach to precomputing certain integrals was first introduced in
Kirby et al. [2004; 2005] and later formalized and automated in Kirby and
Logg [2006; 2007]. A similar approach was implemented in early versions of
DOLFIN [Hoffman and Logg 2002; Hoffman et al. 2006a; 2006b], but only for
piecewise linear elements.

As an example, we consider here the computation of the element matrix
A K for the Laplacian. When the mapping FK from the reference cell is affine
(Figure 1), we have for the Laplacian

A K
i =

∫
K

∇φK
i1

· ∇φK
i2

dx =

∫
K

d∑
β=1

∂φK
i1

∂xβ

∂φK
i2

∂xβ

dx, (5)

whence a change of variables yields

A K
i =

∑
α∈A

A0
iαGα

K ∀i ∈ IK, (6)
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where A and IK are sets of allowed multiindices (depending on the spatial
dimension and the discretizing polynomial spaces). More simply, we can write

A K = A0 : GK, (7)

where

A0
iα =

∫
K0

∂8i1

∂ Xα1

∂8i2

∂ Xα2

dX ,

Gα
K = det F′

K

d∑
β=1

∂ Xα1

∂xβ

∂ Xα2

∂xβ

.

(8)

We refer to the tensor A0 as the reference tensor and to the tensor GK as the
geometry tensor. For more details and extensions of this notation to a wide
class of multilinear forms, we refer the reader to our previous work [Kirby and
Logg 2006; 2007].

In Kirby et al. [2005, 2006] and Kirby and Scott [2007], we have explored a
special mathematical structure that leads to reduced operation counts. How-
ever, it was studied only in a limited case what the net impact of FErari opti-
mizations when the cost of global assembly is counted as well.

3. A FRAMEWORK FOR OPTIMIZATION

In this section, we present an overview of our framework for optimization of
variational form evaluation. Two different approaches are presented. The first
is a coarse-grained strategy based on phrasing the tensor contraction (7) as
a matrix-vector or matrix-matrix multiplication that may be computed by an
optimized library call. The second, which is what FErari implements, exploits
the structure of the tensor contraction to find an optimized computation with
a reduced operation count.

3.1 Tensor Contraction as a Matrix-Vector Product

To evaluate the element tensor A K , one must evaluate the tensor contrac-
tion (7). A simple approach would be to iterate over the entries {A K

i }i∈IK
of

A K and, for each entry A K
i , compute the value of the entry by summing over

the set of indices A. However, by an appropriate reshaping of the tensors A K ,
A0, and GK , one may phrase the tensor contraction as a matrix–vector product
and call an optimized library routine for the computation of the matrix–vector
product, such as the level 2 BLAS routine DGEMV. We write matrix–vector
product as as aK = Ā0gK , where aK and gK are A K and GK reshaped into
vectors and Ā0 is A0 reshaped into a matrix.

Of course, once the computation of one aK may be computed as a matrix-
vector product, the computation of {aKi}M

i=1 for some M elements of the mesh
can naturally be encoded as a matrix-matrix multiplication. Using DGEMM
in such a context is an example of coarse-grained optimization, making good
use of cache in a large computation. Such an approach necessarily overlooks
problem-specific optimizations such as we find in FErari, but may be very
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effective in many circumstances. It is to be expected that which approach is
preferable will depend strongly on how much structure FErari finds and how
well the resulting algorithms are mapped onto hardware, as well as whether
the computation is large enough for DGEMM to have good performance. We
do not explore the coarse-grained strategy further in this article.

3.2 Complexity-Reducing Relations

The matrix Ā0 is computed at compile time by FFC, and typically possesses
significant structure that can be exploited to reduce the amount of arithmetic
needed to multiply it by a vector gK at runtime. It is also helpful to think of
the product Ā0gK as a collection of vector dot products, where vectors a0

i are
the rows of Ā0.

As an example, we consider forming the weak Laplacian on triangles using
quadratic Lagrange basis functions. We show Ā0 in Table I. We have displayed
the index into the unflattened A0 in the first column, and the rest of row i is
the flattened vector a0

i . So, the process of forming A K for some triangle K is
first to compute the geometry vector gK and then to form the matrix-vector
product Ā0gK . In this case, we will obtain a vector aK of length 36, which will
be reshaped to the 6 × 6 element tensor A K . This is then inserted into the
global stiffness matrix via the local-global mapping.

To optimize the evaluation of the element tensor, we look for dependencies
between the vectors {a0

i }i∈IK
, or equivalently the rows of Ā0 that can be used

to reduce the cost of forming the matrix-vector product. We may only look for
structure in {a0

i }i∈IK
, as the gK vectors are only known at runtime. For example,

if two vectors a0
i and a0

i′ are collinear (such as the rows (1,0) and (1,5) in Table I),
then a0

i · gK may be computed using a0
i′ · gK in only one multiply, and vice versa.

If the Hamming distance (number of different entries between ai
0 and ai′

0) is k,
then the result a0

i′ ·gK can be computed from a0
i ·gK in about k multiply-add pairs,

and vice versa. These kinds of relations are called “complexity-reducing rela-
tions,” and are related to common subexpressions. Note that using such a rela-
tionship requires that the code for the dot products be unrolled. As with FFC,
there may come a point at which code bloat outweighs gains in arithmetic cost,
but we remark that code optimized by FErari contains fewer arithmetic oper-
ations and hence is smaller than the standard FFC output, but much larger
than using the BLAS mode of FFC.

In Kirby et al. [2006], we constructed a weighted, undirected graph, the
vertices of which were the vectors a0

i and those weights whose edges were the
pairwise distances under a complexity-reducing relation (the cost of computing
one entry in the element matrix from another). We proved that a minimum
spanning tree of this graph encodes a minimal-arithmetic (in a specific sense)
algorithm for evaluating the product of Ā0 with an arbitrary input vector.

In Figure 2, we show the dependency graph generated by FErari. The
arrows indicate dependency rather than implication; that is, the arrow from
(0,0) to (1,1) indicates that the result of computing a0

(1,1)gK is used to compute

a0
(0,0)gK . Hence, the implied flow of computation is from right to left, and dis-

connected components in the graph are independent of each other.
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Table I. The flattened reference tensor for quadratic Lagrange elements on triangles.
The first column gives the index of the element tensor to which the row corresponds,

and the rest of the columns in the row are the entries of the flattened vector.

(0, 0) 0.5 0.5 0.5 0.5
(0, 1) 0.16666666667 0.0 0.16666666667 0.0
(0, 2) 0.0 0.16666666667 0.0 0.16666666667
(0, 3) 0.0 0.0 0.0 0.0
(0, 4) 0.0 -0.66666666667 0.0 -0.66666666667
(0, 5) -0.66666666667 0.0 -0.66666666667 0.0
(1, 0) 0.16666666667 0.16666666667 0.0 0.0
(1, 1) 0.5 0.0 0.0 0.0
(1, 2) 0.0 -0.16666666667 0.0 0.0
(1, 3) 0.0 0.66666666667 0.0 0.0
(1, 4) 0.0 0.0 0.0 0.0
(1, 5) -0.66666666667 -0.66666666667 0.0 0.0
(2, 0) 0.0 0.0 0.16666666667 0.16666666667
(2, 1) 0.0 0.0 -0.16666666667 0.0
(2, 2) 0.0 0.0 0.0 0.5
(2, 3) 0.0 0.0 0.66666666667 0.0
(2, 4) 0.0 0.0 -0.66666666667 -0.66666666667
(2, 5) 0.0 0.0 0.0 0.0
(3, 0) 0.0 0.0 0.0 0.0
(3, 1) 0.0 0.0 0.66666666667 0.0
(3, 2) 0.0 0.66666666667 0.0 0.0
(3, 3) 1.3333333333 0.66666666667 0.66666666667 1.3333333333
(3, 4) -1.3333333333 -0.66666666667 -0.66666666667 0.0
(3, 5) 0.0 -0.66666666667 -0.66666666667 -1.3333333333
(4, 0) 0.0 0.0 -0.66666666667 -0.66666666667
(4, 1) 0.0 0.0 0.0 0.0
(4, 2) 0.0 -0.66666666667 0.0 -0.66666666667
(4, 3) -1.3333333333 -0.66666666667 -0.66666666667 0.0

(4, 4) 1.3333333333 0.66666666667 0.66666666667 1.3333333333
(4, 5) 0.0 0.66666666667 0.66666666667 0.0
(5, 0) -0.66666666667 -0.66666666667 0.0 0.0
(5, 1) -0.66666666667 0.0 -0.66666666667 0.0
(5, 2) 0.0 0.0 0.0 0.0
(5, 3) 0.0 -0.66666666667 -0.66666666667 -1.3333333333
(5, 4) 0.0 0.66666666667 0.66666666667 0.0
(5, 5) 1.3333333333 0.66666666667 0.66666666667 1.3333333333

As one extension of this technique, we notice that many of the vectors may
be computed effectively by ignoring multiplication by zero. For example, entry
(1,3) in Table I only has one nonzero entry. It makes sense to generate code
for forming a0

(1,3)gK explicitly, instead of using a complexity-reducing relation.
In this case, we have “snipped” the edge from the entry (1,3) to its parent in
the minimum spanning tree before generating code, and thus this entry has no
outgoing arrows. Hence, we properly have a forest rather than a tree.

Many other kinds of structure may be found in Ā0. For example, in many
cases one can prove that the gK tensor has symmetries along certain axes.
We used this fact, for example, in Kirby et al. [2005, 2006], but have as of
yet not automated the detection of such a structure. Also, frequently three or
more rows of Ā0 will be linearly dependent. A first attempt at exploiting this
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Fig. 2. Dependency graph for forming the element stiffness matrix for the Laplacian, using
quadratic Lagrange triangles as determined by FErari.
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structure is found in Kirby and Scott [2007], but our present work is limited to
complexity-reducing relations.

4. BENCHMARK RESULTS

For a range of forms and polynomial degrees, we report several quantities for
forming the matrix and its action. First, we report the base operation count
|IK| |A| for forming the element tensor A K , as well as the operation counts
generated by FFC1 and the FErari optimizations. Having generated code for
the local element computation from both FFC and FErari, we compare the
runtime for these codes being executed several times. This measures the ef-
ficacy of FErari at exactly the point we seek to optimize. Then, to provide
a broader context, we present the speedup obtained in the global assembly
process, when the overhead of sparse data structures is included.

In each case, we generated code for the local and global computation, both
with and without FErari optimizations. This code was compiled and run on
an IBM Thinkpad T60p with 2GB of RAM and a dual-core Intel T2600 chip
running at 2.16 GHz. The operating system was Ubuntu Linux with kernel
2.6.17-10-386. The compiler was g++ version 4.1.2 using optimization flag -O2

on all variational forms, except the weighted Laplacian operator, and action
using quartics in three dimensions. The compiler and machine could only han-
dle optimization mode -O0 in these cases. This illustrates a challenge with
our approach to finite element code generation based on the tensor represen-
tation (7). Since straight-line code is generated for the computation of the
element tensor, complicated forms or high-dimensional finite element spaces
may lead to generation of large amounts of code which the C++ compiler is not
able to handle, particularly in optimized mode. For these forms, generating
code based on quadrature rather than on tensor contraction with FFC/FErari
could be more practical.

For two-dimensional problems, we used a regular triangulation based on
subdividing a 64 × 64 square mesh into right triangles, resulting in a total of
4225 vertices and 8192 triangles. For three dimensions, we used a 16×16×16
partition of the unit cube into 4913 vertices and 24576 tetrahedra. The timing
was performed adaptively to ensure that at least one second of CPU time has
elapsed for a set of at least ten repetitions for each test case. For the sparse-
matrix data structure, a simple std::vector<std::map<unsigned int, double> >

was used, which was found competitive with insertion into a sparse PETSc
matrix.

In most cases, we find decent speedup in the operation count, although
it does not always translate into a speedup in runtime for the local compu-
tation. FErari is currently architecture unaware. Rearranging the matrix-
vector computation in a way that makes poor use of registers, for example, can
more than offset reductions in the actual amount of arithmetic. A better result
would be obtained by somehow combining graph-based optimizations with an

1FFC reduces the base operation count by omitting computation of zeros when the element tensor
is sparse.
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Fig. 3. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the Laplacian (9).

architecture model, or using a special-purpose compiler such as Spiral [Püschel
et al. 2005].

Moreover, even a speedup in local computation does not always improve the
global cost of assembling a matrix or vector. If a relatively small amount of
work is required to compute A K , then the cost of assembling it into the global
matrix or vector may dominate; reductions in arithmetic are not significant.
On the other hand, when the construction of A K is relatively expensive, then
speedup in the construction of the global matrix or vector can be realized by
reduction of arithmetic in the local computation. In our empirical results, we
observe a tendency of FErari to provide better global speedups for more com-
plicated variational forms.

4.1 Laplacian

First, we consider the Laplacian, with the variational form

a(v, u) =

∫
�

∇v · ∇udx. (9)

We use Lagrange polynomials Pk of degree k = 1, 2, . . . , 5 on triangles and
degree k = 1, 2, . . . , 4 on tetrahedra.2

In each case, FErari provides up to about a factor of 3 improvement in op-
eration count. The reductions in operation count as well as local and global-
computation time required are plotted in Figure 3. The reduction in arithmetic

2The polynomial degree on tetrahedra was limited by available resources to compute the
optimization.

ACM Transactions on Mathematical Software, Vol. 35, No. 2, Article 10, Pub. date: July 2008.



Benchmarking Domain-Specific Compiler Optimizations · 10: 11

Fig. 4. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the action of the Laplacian (9).

reduces the runtime to evaluate the local stiffness matrix (multiplying by ḡK)
by a factor of 1.5 to 2, in both two and three dimensions. However, the reduc-
tion does not have a major impact on the global time to assemble the matrix.
In this case, there are very few arithmetic operations needed to construct the
local matrix, and the cost of inserting into the global matrix overshadows the
gains FErari provides.

We also consider the matrix action as needed in a Krylov solver. Assem-
bling into a global vector is less expensive than into a global matrix, and we
see better speedups in evaluating the action of the Laplacian operator. In this
case, FFC and FErari generate code for evaluating Eq. (9) with u a member
of the finite-element space. Speedup of this operation is felt at each iteration
of a Krylov method and so translates directly into decreased solve time. The
matrix Ā0 has the same entries as for forming the stiffness matrix, but has
a different shape. In this case, the shape is |Pk| × (d2|Pk|). Note that FErari
does not do as well for the action as for forming the matrix. Although the
entries of Ā0 are the same as before, the difference in shapes complicates find-
ing collinear relationships. When the rows have only d2 (4 or 9) entries for
the stiffness matrix, more collinearity is found than when there are |Pk| times
as many entries. However, finding Hamming-distance relations is as effective
as before. Despite the smaller reduction in operation count, the effect of the
optimizations on runtime is much greater than in forming the matrix, as we
can see by comparing Figure 3 to Figure 4. A global speedup of about 10% is
observed for degrees 3 through 5 in two dimensions, and a speedup of 20% to
40% for quadratics through quartics in three dimensions. Again, only a small
improvement is observed for low-order methods.
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Fig. 5. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the weighted Laplacian (10).

4.2 Weighted Laplacian

Now, we consider the form

a(v, u, w) =

∫
�

w∇v · ∇udx, (10)

for a fixed weight w where we assume that v, u, w all come from the same
Lagrange finite element space. In this case, the presence of the coefficient w

makes the local form more expensive to evaluate. The matrix Ā0 now has |Pk|
2

rows and d2|Pk| columns. However, the graph of the global matrix for this form
is the same as for the constant coefficient case, assuming the same basis and
mesh are used. Consequently, the cost of assembly is exactly the same once
A K is constructed.

Again, FErari considerably reduces the operation count and runtime for the
local computation. Given that the arithmetic cost is much greater than for the
constant-coefficient case, it is not surprising that the global speedups are much
better, as seen in Figure 5.

As before, Ā0 has the same entries but a different shape when the action of
the form is considered. Now, the shape is |Pk| × (d2|Pk|

2). While FErari does
not reduce the operation count for the matrix action as significantly as it does
for the matrix itself, the global speedups are more significant (Figure 6).

4.3 Advection

Next, we consider the advection operator

a(v, u) =

∫
�

v(β · ∇u) dx, (11)
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Fig. 6. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the action of the weighted Laplacian (10).

where β is some constant vector, and consider forming the global stiffness ma-
trix and its action. For the matrix, the dimension of Ā0 is |Pk|

2 × d3. The
advection β is defined as a piecewise constant vector-valued Lagrange func-
tion which has d degrees of freedom on each element. As a result, the matrix
Ā0 is physically of dimension |Pk|

2 × d3, but the number of nonzero elements
scales like |Pk|

2 × d2. This is because the reference tensor A0 generating the
matrix Ā0 is formed as an outer product with 8α1

[α2] = δα1α2
, that is, component

α2 of the piecewise constant vector-valued basis function 8α1
. Precontracting

the reference tensor along dimensions α1, α2 would thus reduce the size of the
matrix Ā0 to |Pk|

2 × d2. Low-order elements, like piecewise constants and
linears, often generate particular structures that can be used for further op-
timizations. Such optimizations are not handled by FErari and comprise an
interesting venue for further research.

As with forming the Laplacian, the reduced operation counts do not signifi-
cantly affect the global runtime (Figure 7). The operation counts and speedups
for the matrix action are found in Figure 8. Global speedup is again most
significant for higher-order elements in three dimensions.

4.4 Weighted Advection in a Coordinate Direction

Finally, we consider the advection operator oriented along a coordinate axis,
but with the velocity field varying in space (projected into the finite element
space).

a(v, u, w) =

∫
�

vw
∂u

∂x1
dx (12)

ACM Transactions on Mathematical Software, Vol. 35, No. 2, Article 10, Pub. date: July 2008.



10: 14 · R. C. Kirby and A. Logg

Fig. 7. Speedup in operation count, local runtime, and global runtime, for using FErari versus
FFC only for the advection operator (11).

Fig. 8. Speedup in operation count, local runtime, and global runtime for using FErari versus FFC
only for the action of the advection operator (11).

We consider forming the matrix and its action for a fixed weight w. This op-
erator is a portion of the trilinear momentum-advection term in the Navier-
Stokes equations. For constructing the matrix, we observe a nice speedup in
local computation, although in two dimensions this has only a marginal ef-
fect on the global runtime for assembly. However, we gain significantly for
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Fig. 9. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the weighted advection operator (12).

Fig. 10. Speedup in operation count, local runtime, and global runtime for using FErari versus
FFC only for the action of the weighted advection operator (12).

higher-order elements in three dimensions, where we see a global speedup of
180% (a factor of 2.8) for quartics. The operation counts for the local matrix
construction and action are shown in Figure 8, and the speedups are shown in
Figures 9 and 10.

ACM Transactions on Mathematical Software, Vol. 35, No. 2, Article 10, Pub. date: July 2008.



10: 16 · R. C. Kirby and A. Logg

Fig. 11. The global speedup that FErari produces over FFC is plotted against the number of
columns in the associated reference matrix Ā0, which is a measure of the work required to compute
each entry of AK .

4.5 Speedup versus Work

As we noted before, reducing floating-point arithmetic is expected to be more
significant to the global computation when the individual entries in the local
matrix or vector are already expensive to compute. As a test of this conjecture,
we plot the speedup of FErari over FFC against the number of columns in
each reference operator Ā0 in Figure 11. We do this for all orders and forms,
considering matrices and their actions separately. Although it is not an exact
relation (as to be expected), Figure 11 does indicate a general trend of speedup
increasing with the base cost of work per entry.

4.6 Compile Times

It is important to quantify the additional compile-time cost of using FErari
within FFC. In some situations, especially in a just-in-time compilation, a
significant additional cost will outweigh the potential runtime gains. In this
section, we report compile times for a few forms, as an example. It should
be remembered, however, that FErari is currently implemented in Python and
far from tuned for performance. A better implementation should improve these
compile times.

Tables II and III give the compile times for FFC without and with FErari
optimizations, respectively. We also report the time for compiling the C++ code
generated by FFC with GCC (g++). We note a few interesting details from
these numbers. First, we note that FErari optimizations may take consider-
able time, in particular for high-degree polynomials and forms containing co-
efficients. Further, we note that it may also take considerable time to compile
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Table II. Compile Times (in seconds) for FFC, GCC and GCC with
Optimization -O2 for a Set of Forms

Form Degree FFC GCC GCC -O2

Laplacian operator 1 0.016 2.3 2.3
Laplacian operator 2 0.035 2.2 2.5
Laplacian operator 3 0.13 2.5 3.7
Weighted Laplacian operator 1 0.029 2.2 2.4
Weighted Laplacian operator 2 0.26 2.8 5.2
Weighted Laplacian operator 3 2.3 9.1 130

Table III. Compile Times (in seconds) for FErari-Optimized FFC, GCC
and GCC with Optimization -O2 for a Set of Forms

Form Degree FFC -O GCC GCC -O2

Laplacian operator 1 0.12 2.1 2.3
Laplacian operator 2 4 2.2 2.5
Laplacian operator 3 68 2.4 3.3
Weighted Laplacian operator 1 0.23 2.2 2.4
Weighted Laplacian operator 2 22 2.6 4.5
Weighted Laplacian operator 3 760 7.2 78

the generated code. Finally, we note that GCC may in some cases run faster if
the generated code has already been optimized by FErari. This gain is small
compared to the cost of running FErari, and is directly attributable to the re-
sulting unrolled code having fewer operations.

5. CONCLUSIONS

Several facts emerge from our empirical study of optimizing FFC with FErari.
In certain contexts, FErari can provide tens of percent to a few times speedup
in runtime in forming or applying stiffness matrices. Moreover, these cases
tend to be the computationally harder ones (three dimensions, higher-order
polynomials). However, FErari is not without its costs. It dramatically adds to
the compile time for FFC, and when used for simple forms can actually hinder
runtime.

Besides improving the runtime performance of the finite element codes gen-
erated by FFC and FErari, our results shed some light on where FErari could
be improved and in how a fully functional optimizing compiler for finite ele-
ments might be developed. First, our calculations did little to optimally order
the degrees of freedom; better ordering algorithms should decrease the cost
of insertion. Second, algorithms trying to maximize performance must have
some awareness of the underlying computer architecture. The success of Spi-
ral in signal processing suggests this should be possible. Moreover, knowing
where to apply what kinds of optimization, such as FErari’s fine-grained opti-
mization versus a coarse-grained level 3 BLAS approach, must be determined.
This must also be compared against where quadrature-based algorithms might
be effective, as well as whether the stiffness matrix should be explicitly con-
structed, statically condensed, or applied without being constructed.
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PÜSCHEL, M., MOURA, J. M. F., JOHNSON, J., PADUA, D., VELOSO, M., SINGER, B. W.,
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