
17

Algorithms and Data Structures
for Multi-Adaptive Time-Stepping

JOHAN JANSSON
Royal Institute of Technology, Stockholm
and
ANDERS LOGG
University of Oslo

Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous
Galerkin methods for the numerical solution of initial value problems for ordinary or partial dif-
ferential equations. In particular, the multi-adaptive methods allow individual and adaptive time
steps to be used for different components or in different regions of space. We present algorithms
for efficient multi-adaptive time-stepping, including the recursive construction of time slabs and
adaptive time step selection. We also present data structures for efficient storage and interpola-
tion of the multi-adaptive solution. The efficiency of the proposed algorithms and data structures
is demonstrated for a series of benchmark problems.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions—Error analysis; Initial value problems; G.1.8 [Numerical Analysis]: Partial Differen-
tial Equations—Finite element methods; G.4 [Mathematical Software]:—Algorithm design and

analysis; Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multi-adaptivity, individual time steps, local time steps,
multirate, ODE, continuous Galerkin, discontinuous Galerkin, mcgq, mdgq, C++, implementa-
tion, algorithms, DOLFIN

ACM Reference Format:

Jansson, J. and Logg, A. 2008. Algorithms and data structures for multi-adaptive time-stepping.
ACM Trans. Math. Softw. 35, 3, Article 17 (October 2008), 24 pages. DOI = 10.1145/1391989.
1391990. http://doi.acm.org/10.1145/1391989.1391990.

A. Logg is supported by an Outstanding Young Investigator grant from the Research Council of
Norway, NFR 180450.
Authors’ addresses: J. Jansson, School of Computer Science and Communication, Royal Insti-
tute of Technology, SE–100 44 Stockholm, Sweden; email: jjan@csc.kth.se; A. Logg, Center for
Biomedical Computing, Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway;
email: logg@simula.no.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct com-
mercial advantage and that copies show this notice on the first page or initial screen of a display
along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credits is permitted. To copy otherwise, to republish, to post
on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2008 ACM 0098-3500/2008/10-ART17 $5.00 DOI: 10.1145/1391989.1391990. http://doi.acm.org/

10.1145/1391989.1391990.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 2 · J. Jansson and A. Logg

1. INTRODUCTION

In an earlier sequence of papers [Logg 2003a; 2003b; 2006], we introduced
the multi-adaptive Galerkin methods mcG(q) and mdG(q) for the approximate
numerical solution of ODEs of the form:

u̇(t) = f (u(t), t), t ∈ (0,T],

u(0) = u0,
(1)

where u : [0,T]→ R
N is the solution to be computed, u0 ∈ R

N is a given initial
value, T > 0 is a given final time, and f : R

N × (0,T]→ R
N is a given function

that is Lipschitz continuous in u and bounded.
The multi-adaptive Galerkin methods mcG(q) and mdG(q) extend the stan-

dard mono-adaptive continuous and discontinuous Galerkin methods cG(q)
and dG(q), studied previously in Hulme [1972b, 1972a]; Jamet [1978]; Delfour
et al. [1981]; Eriksson et al. [1985]; Johnson [1988]; Eriksson and Johnson
[1991, 1995a, 1995b, 1995c]; Eriksson et al. [1998, 1995]; Estep [1995];
Estep and French [1994]; Estep et al. [2000]; Estep and Williams [1996] and
Estep and Stuart [2002], by allowing individual time step sequences ki = ki(t)
for the different components Ui = Ui(t), i = 1,2, . . . ,N, of the approximate
solution U ≈ u of the initial value problem (1). For related work on local time-
stepping, see also Hughes et al. [1983a, 1983b]; Makino and Aarseth [1992];
Davé et al. [1997]; Alexander and Agnor [1998]; Osher and Sanders [1983];
Flaherty et al. [1997]; Dawson and Kirby [2001]; Lew et al. [2003]; Engstler
and Lubich [1997]; Savcenco et al. [2005] and Savcenco [2008]. In comparison
with existing methods for local time-stepping, the main advantage of the multi-
adaptive Galerkin methods mcG(q) and mdG(q) is the automatic local step size
selection based on a global a posteriori error estimate built into these methods.

In the current article, we discuss important aspects of the implementation
of multi-adaptive Galerkin methods. While earlier results on multi-adaptive
time-stepping presented in Logg [2003a, 2003b, 2006] include the formula-
tion of the methods, a priori and a posteriori error estimates, together with a
proof-of-concept implementation and results for a number of model problems,
the current article addresses the important issue of efficiently implementing
the multi-adaptive methods with minimal overhead as compared to standard
mono-adaptive solvers. For many problems, in particular when the propaga-
tion of the solution is local in space and time, the potential speedup of multi-
adaptivity is large, but the actual speedup may be far from the ideal speedup
if the overhead of the more complex implementation is significant.

1.1 Implementation

The algorithms presented in this article are implemented by the multi-
adaptive ODE-solver available in DOLFIN [Logg et al. http://www.fenics.
org/dolfin/.; Hoffman and Logg 2002], Dynamic Object-oriented Library for
FINite element computation, which is the C++ interface of the new open-
source software project FEniCS [FEniCS 2008; Logg 2007; Dupont et al. 2003]
for the automation of Computational Mathematical Modeling (CMM). The
multi-adaptive solver in DOLFIN is based on the original implementation

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 3

Fig. 1. Individual partitions of the interval (0,T] for different components. Elements between
common synchronized time levels are organized in time slabs. In this example, we have N = 6 and
M = 4.

Tanganyika, presented in Logg [2003b], but has been completely rewritten for
DOLFIN and is being actively developed by the authors.

1.2 Obtaining the Software

DOLFIN is licensed under the GNU (Lesser) General Public License [Free
Software Foundation 1999], which means that anyone is free to use or modify
the software, provided these rights are preserved. The complete source code of
DOLFIN, including numerous example programs, is available at the DOLFIN
Web page [Logg et al. http://www.fenics.org/dolfin/].

1.3 Notation

The following notation is used throughout this article: each component Ui(t),
i = 1, . . . ,N, of the approximate m(c/d)G(q) solution U(t) of (1) is a piecewise
polynomial on a partition of (0,T] into mi sub-intervals. Sub-interval j for
component i is denoted by Iij = (ti, j−1, tij], and the length of the sub-interval is
given by the local time step kij = tij − ti, j−1. We shall sometimes refer to Iij as
an element. This is illustrated in Figure 1. On each sub-interval Iij, Ui|Iij

is a
polynomial of degree at most qij.

Furthermore, we shall assume that the interval (0,T] is partitioned into
blocks between certain synchronized time levels 0 = T0 < T1 < . . . < TM = T.
For each Tn, n = 0,1, . . . ,M and each i = 1,2, . . . ,N, we require that there is
a 0 ≤ j ≤ mi such that tij = Tn. We refer to the collection of local intervals
between two synchronized time levels Tn−1 and Tn as a time slab. We denote
the length of a time slab by Kn = Tn− Tn−1.

1.4 Outline of the Article

We first give an introduction to multi-adaptive time-stepping in Section 2.
We then present the key algorithms used by the multi-adaptive ODE solver

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 4 · J. Jansson and A. Logg

of DOLFIN in Section 3, followed by a discussion of data structures for ef-
ficient representation and interpolation of multi-adaptive solutions in Section
4. In Section 5, we discuss the efficiency of multi-adaptive time-stepping and in
Section 6, we present a number of numerical examples that demonstrate the
efficiency of the proposed algorithms and data structures. Finally, we give
some concluding remarks in Section 7.

2. MULTI-ADAPTIVE TIME-STEPPING

In this section, we give a quick introduction to multi-adaptive time-stepping,
including the formulation of the methods, error estimates, and adaptivity. For
a more detailed account, we refer the reader to Logg [2003a, 2003b, 2006].

2.1 Formulation of the Methods

The mcG(q) and mdG(q) methods are obtained by multiplying the system of
equations (1) with a suitable test function v, to obtain the following variational
problem. Find U ∈ V with U(0) = u0, such that:

∫ T

0

(v, U̇) dt =

∫ T

0

(v, f (U, ·)) dt ∀v ∈ V̂, (2)

where (·, ·) denotes the standard inner product on R
N and (V̂,V) is a suitable

pair of discrete function spaces, the test and trial spaces respectively.
For the standard cG(q) method, the trial space V consists of the space of

continuous piecewise polynomial vector-valued functions of degree q = q(t) on
a partition 0 = t0 < t1 < · · · < tM = T and the test space V̂ consists of the space
of (possibly discontinuous) piecewise polynomial vector-valued functions of
degree q−1 on the same partition. The multi-adaptive mcG(q) method extends
the standard cG(q) method by extending the test and trial spaces to piecewise
polynomial spaces on individual partitions of the time interval that satisfy
the constraints introduced in the previous section and illustrated in Figure 1.
Thus, each component Ui = Ui(t) is continuous and a piecewise polynomial on
the individual partition 0 = ti0 < ti1 < · · · < timi

= T for i = 1,2, . . . ,N.
For the standard dG(q) method, the test and trial spaces are equal and

consist of the space of (possibly discontinuous) piecewise polynomial vector-
valued functions of degree q = q(t) on a partition 0 = t0 < t1 < · · · < tM = T,
which extends naturally to the multi-adaptive mdG(q) method by allowing
each component of the test and trial functions to be a piecewise polynomial
on its own partition of the time interval as shown for the mcG(q) method. Note
that for both the dG(q) and the mdG(q) methods, the integral

∫

0,T(v, U̇) dt in (2)
must be treated appropriately at the points of discontinuity, see Logg [2003a].

Both in the case of the mcG(q) and mdG(q) methods, the variational
problem (2) gives rise to a system of discrete equations by expanding the solu-
tion U in a suitable basis on each local interval Iij,

Ui|Iij
=

qij
∑

m=0

ξijmφijm, (3)

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 5

where {ξijm}
qij

m=0 are the degrees of freedom for Ui on Iij and {φijm}
qij

m=0 is a suitable
basis for Pqij(Iij). For any particular choice of quadrature, the resulting system
of discrete equations takes the form of an implicit Runge–Kutta method on
each local interval Iij. The discrete equations take the form:

ξijm = ξ−ij0 + kij

qij
∑

n=0

w
[qij]
mn fi(U(τ−1

ij (s
[qij]
n)), τ−1

ij (s
[qij]
n)), (4)

for m = 0, . . . ,qij, where {w
[qij]
mn }

qij

m=0,n=0 are weights, τij maps Iij to (0,1], τij(t) =

(t− ti, j−1)/(tij− ti, j−1), and {s
[qij]
n }

qij

n=0 are quadrature points defined on [0,1]. Note
that we have assumed that the number of quadrature points is equal to the
number of nodal points. See Logg [2003a] for a discussion of suitable quadra-
ture rules and basis functions.

2.2 Error Estimates and Adaptivity

The global error e = U − u of the approximate solution U of (1) may be
bounded in terms of computable quantities. Such an a posteriori error esti-
mate is proved in Logg [2003a], both for the mcG(q) and mdG(q) methods. The
a posteriori error estimate provides a bound for any given linear functional
M : R

N → R of the global error e(T) at the final time, such as the error ei(T), in
a single component. Bounds for the error itself in various norms may also be
approximated. In the following, we state the basic a posteriori error estimate
for the mcG(q) method and refer to Logg [2003a] for a complete discussion,
including error estimates for mdG(q).

For the mcG(q) method, the error estimate takes the following form:

|M(e(T))| ≤ E ≡

N
∑

i=1

Si(T) max
[0,T]

{

Cik
qi

i |Ri|
}

. (5)

Here, R = U̇ − f (U, ·) denotes the residual of the computed solution, Ci = Ci(t)
denotes an interpolation constant (which may be different for each local inter-
val) and Si(T) denotes a stability factor that measures the rate of propagation
of local errors for component Ui (the influence of a nonzero residual in com-
ponent Ui on the size of the error in the given functional). By selecting the
local time steps ki = ki(t) such that E = TOL for a given tolerance TOL, one
may thus guarantee that the error in the functional M is bounded by the given
tolerance, |M(e(T))| ≤ TOL.

This can be compared to standard Runge–Kutta methods for the solution
of initial value problems, where the stability factor quantifies the relationship
between the local error and the global error. Note that alternatively, the sta-
bility information may be kept as a local time-dependent stability weight for
more fine-grained control of the contributions to the global error. The stability
factors are obtained by solving a dual problem of (1) for the given functional M,
[Eriksson et al. 1995; Logg 2003a]. The particular form of the dual problem for
(1) will be discussed in Section 3.5.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 6 · J. Jansson and A. Logg

The individual time steps may be chosen so as to equidistribute the error in
the different components in an attempt to satisfy

Cijk
qij

ij max
Iij

|Ri| = TOL/(NSi(T)), (6)

for each local time interval Iij. This may be done in an iterative fashion, as
outlined in the following basic adaptive algorithm:

(0) Assume Si(T) = 1 for i = 1,2, . . . ,N;

(i) solve the primal problem with time steps based on (6);

(ii) solve the dual problem and compute the stability factors;

(iii) compute an error bound E based on (5);

(iv) if E ≤ TOL then stop; if not go back to (i).

3. ALGORITHMS

We present a collection of key algorithms for multi-adaptive time-stepping.
The algorithms are given in pseudo-code and where appropriate we give
remarks on how the algorithms have been implemented in C++ for DOLFIN.
In most cases, we present simplified versions of the algorithms with a focus on
the most essential steps.

3.1 General Algorithm

The general multi-adaptive time-stepping algorithm is Algorithm 1. Starting
at t = 0, the algorithm creates a sequence of time slabs until the given end time
T, is reached. In each macro time step, Algorithm 2 (CreateTimeSlab) is called
to create a time slab covering an interval [Tn−1,Tn] such that Tn ≤ T. For each
time slab, the system of discrete equations is solved iteratively, using direct
fixed-point iteration or a preconditioned Newton’s method, until the discrete
equations given by the mcG(q) or mdG(q) method have converged.

Algorithm 1. U = Integrate(ODE)

t← 0
while t< T

{time slab, t}← CreateTimeSlab({1, . . . ,N}, t, T)
SolveTimeSlab(time slab)

end while

The basic forward integrator, Algorithm 1, can be used as the main compo-
nent of an adaptive algorithm with automated error control of the computed
solution, as outlined in Section 2. In each iteration, the primal problem (1)
is solved using Algorithm 1. An ODE of the form (1) representing the dual

problem is then created and solved using Algorithm 1. It is important to note
that both the primal and the dual problems may be solved using the same algo-
rithm, but with possibly different time steps, tolerances, methods, and orders.
When the solution of the dual problem has been computed, the stability factors
{Si(T)}Ni=1, and the error estimate may be computed.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 7

Fig. 2. The recursive organization of the time slab. Each time slab contains an element group and
a list of recursively nested time slabs. The root time slab in the figure contains one element group
of one element and three sub-slabs. The first of these sub-slabs contains an element group of two
elements and two nested sub-slabs, and so on. The root time slab recursively contains a total of
nine element groups and 33 elements.

3.2 Recursive Construction of Time Slabs

In each step of Algorithm 1, a new time slab is created between two synchro-
nized time levels Tn−1 and Tn. The time slab is organized recursively as follows.
The root time slab covering the interval [Tn−1,Tn] contains a non-empty list of
elements, which we refer to as an element group, and a possibly empty list
of time slabs, which in turn may contain nested groups of elements and time
slabs. Each such element group together with the corresponding nested set of
element groups is referred to as a sub-slab. This is illustrated in Figure 2.

To create a time slab, we first compute the desired time steps for all com-
ponents as given by the a posteriori error estimate (5). We discuss the time
step selection in detail in Section 3.4. A threshold θK, is then computed based
on the maximum time step K, among the components and a fixed parameter
θ ∈ (0,1), controlling the density of the time slab. The components are parti-
tioned into two sets based on the threshold, and a large time step K is selected
to be the smallest time step among the components in the set with large time
steps as described in Algorithm 3 and illustrated in Figure 3. For each com-
ponent in the group with large time steps, an element is created and added
to the element group of the time slab. The remaining components, with small
time steps, are processed by a recursive application of this algorithm for the
construction of time slabs.

We organize the recursive construction of time slabs as described by Algo-
rithms 2, 3, 4, and 5. The recursive construction simplifies the implementa-
tion; each recursively nested sub-slab can be considered as a sub-system of
the ODE. Note that the element group containing elements for components in
group I1 is created before the recursively nested sub-slabs for components in

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 8 · J. Jansson and A. Logg

Fig. 3. The partition of components into groups of small and large time steps for θ = 1/2.

group I0. The tree of time slabs is thus created recursively breadth-first, which
means in particular that the element for the component with the largest time
step is created first.

Algorithm 3 for the partition of components can be implemented efficiently
using the function std::partition(), which is part of the Standard C++
Library.

3.3 Solving the System of Discrete Equations

On each time slab Tn, n = 1,2, . . . ,M, we need to solve a system of equations
for the degrees of freedom on the time slab. On each local interval, Iij ∈ Tn,
these equations are given by (4). Depending on the properties of the given
system (1), different solution strategies for the time slab system (4), may be
appropriate as outlined in the following.

Algorithm 2. {time slab, Tn} = CreateTimeSlab(components, Tn−1, T)

{I0, I1, K}← Partition(components)
if Tn−1 + K < T

Tn← Tn−1 + K

else

Tn← T

end if

element group← CreateElements(I1, Tn−1, Tn)
time slabs← CreateTimeSlabs(I0, Tn−1, Tn)
time slab← {element group, time slabs}

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 9

Algorithm 3. {I0, I1, K} = Partition(components)

I0 ← ∅

I1 ← ∅

K← maximum time step within components
for each component

k← time step of component
if k < θK

I0 ← I0 ∪ {component}
else

I1 ← I1 ∪ {component}
endif

end for

K← minimum time step within I1

K← K

Algorithm 4. elements = CreateElements(components, Tn−1, Tn)

elements← ∅
for each component

create element for component on [Tn−1,Tn]
elements← elements ∪ element

end for

Algorithm 5. time slabs = CreateTimeSlabs(components, Tn−1, Tn)

time slabs← ∅
t← Tn−1

while t< T

{time slab, t}← CreateTimeSlab(components, t, Tn)
time slabs← time slabs ∪ time slab

end while

3.3.1 Direct Fixed-Point Iteration. In the simplest case, the time slab sys-
tem is solved by direct fixed-point iteration on (4) for each element in the time
slab. The fixed-point iteration is performed in a forward fashion, sweeping
over the elements in the time slab in the same order as they are created by
Algorithm 2. This means that for each component in the time slab system, the
end-time value on each element is updated before the degrees of freedom for
the following element. Thus, for each element Iij ∈ Tn, we compute the degrees

of freedom {ξijm}
qij

j=0 according to:

ξijm = ξ−ij0 + kij

qij
∑

n=0

w
[qij]
mn fi(U(τ−1

ij (s
[qij]
n)), τ−1

ij (s
[qij]
n)), m = 0,1, . . . ,qij. (7)

Direct fixed-point iteration converges if the system is non-stiff and typically
only a few iterations are needed. In fact, one may consider a system to be stiff
if direct fixed-point iteration does not converge.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 10 · J. Jansson and A. Logg

3.3.2 Damped Fixed-Point Iteration. If the system is stiff, that is, direct
fixed-point iteration does not converge, one may introduce a suitable amount
of damping to adaptively stabilize the fixed-point iteration. The fixed-point
iteration (7) may be written in the form:

ξijm = gijm(ξ), (8)

where ξ is the vector of degrees of freedom for the solution on the time slab.
We modify the fixed-point iteration by introducing a damping parameter α:

ξijm = (1− αijm)ξijm + αijmgijm(ξ). (9)

In Logg [2004], a number of different strategies for the selection of the damping
parameter α are discussed. We mention two of these strategies here. The first
strategy chooses α based on the diagonal derivatives ∂ fi/∂ui, i = 1,2, . . . ,N,
corresponding to a modified Newton’s method where the Jacobian is approxi-
mated by a diagonal matrix. This strategy works well for systems with a di-
agonally dominant Jacobian, including many systems arising when modeling
chemical reactions. The second strategy adaptively chooses a scalar α, based
on the convergence of the fixed-point iterations.

3.3.3 Newton’s Method. Alternatively, one may apply Newton’s method
directly to the full system of equations (7) associated with each time slab. The
linear system in each Newton iteration may then be solved either by a direct
method or an iterative method such as a Krylov subspace method in combi-
nation with a suitable preconditioner, depending on the characteristics of the
underlying system (1). In addition, one may also apply a special precondi-
tioner that improves the convergence by propagating values forward in time
within the time slab. Note that if the multi-adaptive efficiency index is large
(see Section 5), then the time slab system is not significantly larger than the
corresponding time slab system for a mono-adaptive method.

3.3.4 Choosing a Solution Strategy. Ultimately, an intelligent solver
should automatically choose a suitable algorithm for the solution of the time
slab system. Thus, the solver may initially try direct fixed-point iteration. If
the system is stiff, the solver switches to adaptive fixed-point iteration (as out-
lined in Logg [2004]). Finally, if the adaptive fixed-point iteration converges
slowly, the solver may switch to Newton’s method.

3.3.5 Interpolation of the Solution. To update the degrees of freedom on an
element according to (7), the appropriate component fi of the right-hand side
of (1) needs to be evaluated at the set of quadrature points. In order for fi to be
evaluated, each component Ui′ of the computed solution U on which fi depends,
needs to be evaluated at the quadrature points. We let Si ⊆ {1, . . . ,N} denote
the sparsity pattern of component Ui, that is, the set of components on which
fi depends,

Si = {i′ ∈ {1, . . . ,N} : ∂ fi/∂ui′ 6= 0}. (10)

Thus, to evaluate fi at a given quadrature point t, only the components {Ui′}i′∈Si

need to be evaluated at t, as in Algorithm 6. This is of particular importance for

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 11

problems of sparse structure and enables efficient multi-adaptive integration
of time-dependent PDEs, as demonstrated in Section 6. The sparsity pattern
Si, is automatically detected by the solver. Alternatively, the sparsity pattern
may be specified by a sparse matrix.

Algorithm 6. y = EvaluateRightHandSide(i, t)

for i′ ∈ Si

x(i′)← Ui′ (t)
end for

y← fi(x, t)

In Algorithm 6, the key step is the evaluation of a component Ui′ at a given
point t. For a standard mono-adaptive method, this is straightforward, since
all components use the same time steps. In particular, if the quadrature points
are chosen to be the same as the nodal points, the value of Ui′ (t) is known. For
a multi-adaptive method, a quadrature point t for the evaluation of fi is not
necessarily a nodal point for Ui′ . To evaluate Ui′(t), one thus needs to find the
local interval Ii′ j′ , such that t ∈ Ii′ j′ and then evaluate Ui′(t) by interpolation
on that interval. In Section 4, we discuss data structures that allow efficient
storage and interpolation of the multi-adaptive solution. These data structures
give O(1) access to the value of any component Ui′ in the sparsity pattern Si at
any quadrature point t for fi.

3.4 Multi-Adaptive Time Step Selection

The individual and adaptive time steps kij, are determined during the recur-
sive construction of time slabs based on an a posteriori error estimate, as
discussed in Section 2. Thus, according to (6), each local time step kij should be
chosen to satisfy:

kij =

(

TOL

CijNSi(T) maxIij
|Ri|

)1/qij

, (11)

where TOL is a given tolerance.
However, the time steps cannot be based directly on (11), since that leads

to unwanted oscillations in the size of the time steps. If ri, j−1 = maxIi, j−1
|Ri| is

small, then kij will be large, and as a result rij will also be large. Consequently,
ki, j+1 and ri, j+1 will be small, and so on. To avoid these oscillations, we adjust
the time step kij according to Algorithm 7, which determines the new time step
as a weighted harmonic mean value of the previous time step and the time
step given by (11). Alternatively, DOLFIN provides time step control based on
the PID controllers presented in Gustafsson et al. [1988] and Söderlind [2003],
including H0211 and H211PI. However, the simple controller of Algorithm 7
performs well compared to the more sophisticated controllers in Gustafsson
et al. [1988] and Söderlind [2003]. A suitable value for the weight w, in Algo-
rithm 7 is w = 5 (found empirically).

The initial time steps k11 = k21 = · · · = kN1 = K1 are chosen equal for all
components and are determined iteratively for the first time slab. The size K1

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 12 · J. Jansson and A. Logg

Algorithm 7. k = Controller(knew, kold, kmax)

k← (1 + w)koldknew/(kold + wknew)
k← min(k,kmax)

of the first time slab is first initialized to some default value, possibly based on
the length T of the time interval, and then adjusted until the local residuals
are sufficiently small for all components.

3.5 Solving the Dual Problem

Stability factors may be approximated by numerically solving an auxiliary
dual problem for (1). This dual problem is given by the following system of
linear ordinary differential equations:

−ϕ̇(t) = J(U(t), t)⊤ϕ(t), t ∈ [0,T),

ϕ(T) = ψ,
(12)

where J(U(t), t) denotes the Jacobian of the right-hand side f , of (1), at time t

and ψ = M′ (the Riesz representer of M) is initial data for the dual problem
corresponding to the given functional M to be estimated. Note that we need
to linearize around the computed solution U, since the exact solution u, of (1),
is not known. To solve this backward problem over [0,T) using the forward
integrator Algorithm 1, we rewrite (12) as a forward problem. With w(t) =
ϕ(T − t), we have ẇ = −ϕ̇(T − t) = J(U(T − t),T − t)⊤w(t), and so (12) can be
written as a forward problem for w in the form:

ẇ(t) = f ∗(w(t), t) ≡ J(U(T − t),T − t)⊤w(t), t ∈ (0,T],

w(0) = ψ.
(13)

4. DATA STRUCTURES

For a standard mono-adaptive method, the solution on a time slab is typically
stored as an array of values at the right end-point of the time slab, or as a list
of arrays (possibly stored as one contiguous array) for a higher order method
with several stages. However, a different data structure is needed to store the
solution on a multi-adaptive time slab. Such a data structure should ideally
store the solution with minimal overhead compared to the cost of storing only
the array of degrees of freedom for the solution on the time slab. In addition,
it should also allow for efficient interpolation of the solution, that is, accessing
the values of the solution for all components at any given time within the
time slab. We present a data structure that allows efficient storage of the
entire solution on a time slab with little overhead, and at the same time allows
efficient interpolation with O(1) access to any given value during the iterative
solution of the system of discrete equations.

4.1 Representing the Solution

The multi-adaptive solution on a time-slab can be efficiently represented using
a data structure consisting of eight arrays, as shown in Table I. For simplicity,

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 13

Table I. Data Structures for Efficient Representation of a Multi-Adaptive Time Slab

Array Type Description

sa double left end-points for sub-slabs
sb double right end-points for sub-slabs
jx double values for degrees of freedom
ei int component indices for elements

es int time slabs containing elements
ee int previous elements for elements
ed int first dependencies for elements
de int elements for dependencies

we assume that all elements in a time slab are constructed for the same choice
of method, mcG(q) or mdG(q), for a given fixed q.

The recursive construction of time slabs as discussed in Section 3.2 gener-
ates a sequence of sub slabs, each containing a list of elements (an element
group). For each sub-slab, we store the value of the time t at the left end-point
and at the right end-point in the two arrays sa and sb. Thus, for sub-slab
number s covering the interval (as,b s), we have:

as = sa[s],

b s = sb[s].
(14)

Furthermore, for all elements in the root time slab, we store the degrees of
freedom in the order they are created in the array jx (mapping a degree of
freedom j, to the value x, of that degree of freedom). Thus, if each element has
q degrees of freedom, as in the case of the multi-adaptive mcG(q) method, then
the length of the array jx, is q times the number of elements. In particular, if
all components use the same time steps, then the length of the array jx, is qN.

For each element, we store the corresponding component index i, in the
array ei, in order to be able to evaluate the correct component fi, of the right-
hand side f , of (1) when iterating over all elements in the time slab to update
the degrees of freedom. When updating the values on an element according to
(7), it is also necessary to know the left and right end-points of the elements.
Thus, we store an array es, that maps the number e, of a given element to the
number s, of the corresponding sub-slab containing the element. As a conse-
quence, the left end-point ae, and right end-point b e, for a given element e, are
given by:

ae = sa[es[e]],

b e = sb[es[e]].
(15)

4.2 Interpolating the Solution at Quadrature Points

Updating the values on an element according to (7) also requires knowledge
of the value at the left end-point, which is given as the end-time value on the
previous element in the time slab for the same component (or the end-time
value from the previous time slab). This information is available in the array
ee, which stores for each element, the number of the previous element (or −1
if there is no previous element).

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 14 · J. Jansson and A. Logg

As discussed in Section 3.3, the system of discrete equations on each time
slab is solved by iterating over the elements in the time slab and updating the
values on each element, either in a direct fixed-point iteration or a Newton’s
method. We must then, for any given element e, corresponding to some com-
ponent i = ei[e], evaluate the right-hand side fi, at each quadrature point t,
within the element. This requires the values of the solution U, at t, for all
components contained in the sparsity pattern Si, for component i, according to
Algorithm 6. As a consequence of Algorithm 2 for the recursive construction of
time slabs, elements for components that use large time steps are constructed
before elements for components that use small time steps. Since all elements
of the time slab are traversed in the same order during the iterative solution
of the system of discrete equations, elements corresponding to large time steps
have recently been visited and cover any element that corresponds to a smaller
time step. The last visited element for each component is stored in an auxil-
iary array elast, of size N. Thus, if i′ ∈ Si, and component i′, has recently,
been visited, then it is straightforward to find the latest element e′ = elast[i′],
for component i′, that covers the current element for component i, and inter-
polate Ui′ , at time t. It is also straightforward to interpolate the values for
any components that are present in the same element group as the current
element.

However, when updating the values on an element e, corresponding to some
component i = ei[e], depending on some other component i′ ∈ Si, which uses
smaller time steps, one must find for each quadrature point t, on the element e,
the element e′, for component i′, containing t, which is nontrivial. The element
e′, can be found by searching through all elements for component i′, in the time
slab, but this quickly becomes inefficient. Instead, we store for each element
e, a list of dependencies to elements with smaller time steps in the two arrays
ed, and de. These two arrays store a sparse integer matrix of dependencies
to elements with smaller time steps for all elements in the time slab. Thus,
for any given element e, the number of dependencies to elements with smaller
time steps is given by:

ed[e + 1]− ed[e], (16)

and the elements with smaller time steps that need to be interpolated at the
quadrature points for element e, are given by:

{de[ed[e]], de[ed[e] + 1], . . . , de[ed[e + 1]− 1]}. (17)

5. PERFORMANCE

The efficiency of multi-adaptive time-stepping compared to standard mono-
adaptive time-stepping depends on the system being integrated, the tolerance,
and the efficiency of the implementation. For many systems, the potential
speedup is large, but the actual speedup also depends on the overhead needed
to handle the additional complications of a multi-adaptive implementation:
the recursive construction of time slabs and the interpolation of values within
a time slab.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 15

Fig. 4. A time slab with NK = Nk = 2 and multi-adaptive efficiency index µ = 16/10 = 1.6.

To study the performance of multi-adaptive time-stepping, we consider a
system of N components and time steps given by {kij = |Iij| : Iij ∈ Tn} on some
time slab Tn. We define the multi-adaptive efficiency index µ, by

µ =
N/kmin

|Tn|/kmax
=

kmax

kmin

N

|Tn|
, (18)

where kmin = minIij∈Tn
kij, kmax = maxIij∈Tn

kij, and |Tn| is the number of local
intervals in the time slab Tn. Thus, to obtain the multi-adaptive efficiency
index, we divide the number of local intervals per unit time for a mono-
adaptive discretization with the actual number of local intervals per unit time
for a multi-adaptive discretization. This is the potential speedup when com-
pared to a mono-adaptive method that is forced to use the same small time
step kmin for all components. However, the actual speedup is always smaller
than µ for two reasons. The first is the overhead of the multi-adaptive im-
plementation, and the second is that the system of discrete equations on each
time slab may sometimes be more expensive to solve than the corresponding
mono-adaptive systems (because they are typically larger in size).

Consider a model problem consisting of N = NK + Nk components, where
NK components vary on a slow time scale K, and Nk components vary on a
fast time scale k, as in Figure 4. The potential speedup is given by the multi-
adaptive efficiency index,

µ =
K

k

N

NK + NkK/k
=

K

k

N/K

NK/K + Nk/k
∼

K

k
≫ 1, (19)

if NK/K ≫ Nk/k and K ≫ k, that is the number of large elements dominates
the number of small elements. Thus, the potential speedup can be very large
for a system where a large part of the system varies on a large time scale and
a small part of the system varies on a small time scale.

If, on the other hand, K ∼ k or NK ∼ Nk, then the multi-adaptive effi-
ciency index may be of moderate size. As a consequence, the actual speedup
may be small (or even negative) if the overhead of the multi-adaptive imple-
mentation is significant. In the next section, we indicate the multi-adaptive
efficiency index and compare this to the actual speedup for a number of bench-
mark problems.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 16 · J. Jansson and A. Logg

6. NUMERICAL EXAMPLES AND BENCHMARK RESULTS

In this section, we present two benchmark problems to demonstrate the
efficiency of multi-adaptive time-stepping. Both examples are time-dependent
PDEs that we discretize in space using the cG(1) finite element method to
obtain a system of ODEs, sometimes referred to as the method of lines
approach. In each case, we lump and invert the mass matrix so as to obtain a
system of the form (1).

In the first of the two benchmark problems, the individual time steps are
chosen automatically, based on an a posteriori error estimate as discussed in
Section 3.4. For the second problem, the time steps are fixed in time and deter-
mined according to a local CFL condition k ∼ h, on each element. The results
were obtained with DOLFIN version 0.6.2.

6.1 A Nonlinear Reaction-Diffusion Equation

As a first example, we solve the following nonlinear reaction-diffusion equa-
tion, taken from Savcenco et al. [2005]:

ut − ǫuxx = γu2(1− u) in �× (0,T],

∂nu = 0 on ∂�× (0,T],

u(·,0) = u0 in �,

(20)

with � = (0, L), ǫ = 0.01, γ = 1000 and final time T = 1.
The equation is discretized in space with the standard cG(1) method using a

uniform mesh with 1000 mesh points. The initial data is chosen according to:

u0(x) =
1

1 + exp(λ(x− 1))
. (21)

The resulting solution is a reaction front, sweeping across the domain from left
to right, as demonstrated in Figure 5. The multi-adaptive time steps are auto-
matically selected to be small in and around the reaction front, and sweep the
domain at the same velocity as the reaction front, as demonstrated in Figure 6.

To study the performance of the multi-adaptive solver, we compute the
solution for a range of tolerances with L = 5 and compare the resulting error
and CPU time with a standard mono-adaptive solver that uses equal adap-
tive time steps for all components. To make the comparison fair, we compare
the multi-adaptive mcG(q) method with the mono-adaptive cG(q) method. In
the benchmarks, we only examine q = 1. Both methods are implemented for
general order q in the same programming language (C++), within a common
framework (DOLFIN), but the mono-adaptive method takes full advantage of
the fact that the time steps are equal for all components. In particular, the
mono-adaptive solver may use much simpler data structures (a plain C array)
to store the solution on each time slab and there is no overhead for interpo-
lation of the solution. Furthermore, for the multi-adaptive solver, we need to
supply a right-hand side function f which may be called to evaluate single
components fi(U(t), t), while for the mono-adaptive solver, we may evaluate
all components of f at the same time, which is usually an advantage for the
mono-adaptive solver.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 17

Fig. 5. Propagation of the solution of the reaction–diffusion problem (20).

Fig. 6. The multi-adaptive time steps as function of space at a sequence of points in time for the

test problem (20).

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 18 · J. Jansson and A. Logg

Fig. 7. CPU time as function of the error (left) and number of components N (right) for mcG(1)
(dashed line) and cG(1) (solid line) for the test problem (20).

This is a more meaningful measure of performance compared to only mea-
suring the number degrees of freedom (local steps) or comparing the CPU time
against the same multi-adaptive solver when it is forced to use identical time
steps for all components, as in Logg [2003a], since one must also take into
account the overhead of the more complicated algorithms and data structures
necessary for the implementation of multi-adaptive time-stepping.

Note that we do not solve the dual problem for computing stability factors
(or stability weights), which is necessary to obtain a reliable error estimate.
Thus, the tolerance only controls the size of the error modulo the stability
factor, which is unknown.

In addition, we also compare the two methods for varying size L, of the
domain �, keeping the same initial conditions but scaling the number of mesh
points according to the length of the domain, N = 1000L/5. As the size of
the domain increases, we expect the relative efficiency of the multi-adaptive
method to increase, since the number of inactive components increases relative
to the number of components located within the reaction front.

In Figure 7, we plot the CPU time as function of the tolerance and number
of components (size of domain) for the mcG(1) and cG(1) methods. We also
summarize the results in Table II and Table III. As expected, the speedup
expressed as the multi-adaptive efficiency index µ, that is, the ideal speedup if
the cost per degree of freedom were the same for the multi- and mono-adaptive
methods, is large in all test cases: about a factor 100. The speedup in terms
of the total number of time slabs is also large. Note that in Table II, the total
number of time slabs M, remains practically constant as the tolerance and
the error are decreased. The decreased tolerance instead results in finer local
resolution of the reaction front, which is evident from the increasing multi-
adaptive efficiency index. At the same time, the mono-adaptive method needs
to decrease the time step for all components, so the relative efficiency of the
multi-adaptive method increases as the tolerance decreases. See also Figure 8
for a comparison of the multi-adaptive time steps at two different tolerances.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 19

Table II. Benchmark Results for mcG(1) (top) and cG(1) (bottom) for Varying
Tolerance and Fixed Number of Components N = 1000 for the Test Problem
(20). The Table Shows the Tolerance TOL Used for the Computation, the
Error ‖e(T)‖∞ in the Maximum Norm at the Final Time, the Time Used to
Compute the Solution, the Number of Time Slabs M (with the Number of
Rejected Time Slabs in Parenthesis), the Average Number of Iterations n on
the Time Slab System (with the Number of Local Iterations on Sub-Slabs in

Parenthesis), and the Multi-Adaptive Efficiency Index, µ

TOL ‖e(T)‖∞ CPU time M n µ

1.0 · 10−6 1.8 · 10−5 14.2 s 1922 (5) 3.990 (1.498) 95.3

5.0 · 10−7 1.1 · 10−5 23.3 s 1912 (9) 4.822 (1.544) 138.2

1.0 · 10−7 1.9 · 10−6 48.1 s 1929 (7) 4.905 (1.594) 142.6

5.0 · 10−8 9.0 · 10−7 49.8 s 1917 (7) 4.131 (1.680) 172.4

TOL ‖e(T)‖∞ time M n µ

1 · 10−6 2.3 · 10−5 28.1 s 117089 (1) 4.0 1.0

5 · 10−7 1.2 · 10−5 39.5 s 165586 (1) 4.0 1.0

1 · 10−7 2.3 · 10−6 71.9 s 370254 (1) 3.0 1.0

5 · 10−8 1.2 · 10−6 101.7 s 523615 (1) 3.0 1.0

Table III. Benchmark Results for mcG(1) (top) and cG(1) (bottom)
for Fixed Tolerance TOL = 1.0 · 10−6 and Varying Number of
Components (and Size of Domain). (See Table II for an Explanation

of Table Legends)

N ‖e(T)‖∞ CPU time M n µ

1000 1.8 · 10−5 13.6 s 1922 (5) 4.0 (1.5) 95.3

2000 1.7 · 10−5 17.3 s 1923 (5) 4.0 (1.2) 140.5

4000 1.6 · 10−5 24.0 s 1920 (6) 4.0 (1.0) 185.0

8000 1.7 · 10−5 33.7 s 1918 (5) 4.0 (1.0) 218.8

16000 1.7 · 10−5 57.9 s 1919 (5) 4.0 (1.0) 240.0

N ‖e(T)‖∞ time M n µ

1000 2.3 · 10−5 28.1 s 117089 (1) 4.0 1.0

2000 2.2 · 10−5 64.8 s 117091 (1) 4.0 1.0

4000 2.2 · 10−5 101.3 s 117090 (1) 4.0 1.0

8000 2.2 · 10−5 175.1 s 117089 (1) 4.0 1.0

16000 2.2 · 10−5 327.7 s 117089 (1) 4.0 1.0

The situation is slightly different in Table III, where the tolerance is kept
constant, but the size of the domain and number of components vary. Here, the
number of time slabs remains practically constant for both methods, but the
multi-adaptive efficiency index increases as the size of the domain increases,
since the reaction front then becomes more and more localized relative to the
size of the domain. As a result, the efficiency index of the multi-adaptive
method increases as the size of the domain is increased.

In all test cases, the multi-adaptive method is more efficient than the
standard mono-adaptive method even when the CPU time (wall-clock time)
is chosen as a metric for the comparison. In the first set of test cases, with
varying tolerance, the actual speedup is about a factor 2.0 whereas in the
second test case, with varying size of the domain, the speedup increases from
about a factor 2.0 to a factor 5.7 for the range of test cases. These are sig-
nificant speedups, although far from the ideal speedup which is given by the
multi-adaptive efficiency index.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 20 · J. Jansson and A. Logg

Fig. 8. Multi-adaptive time steps at t = 0.5 for two different tolerances for the test problem (20).

There are two main reasons that make it difficult to attain full speedup.
The first is that as the size of the time slab increases, the number of iterations
n, needed to solve the system of discrete equations increases. In Table III,
the number of iterations, including local iterations on individual elements as
part of a global iteration on the time slab, is about a factor 1.5 larger for the
multi-adaptive method. However, the main overhead lies in the more straight-
forward implementation of the mono-adaptive method compared to the more
complicated data structures needed to store and interpolate the multi-adaptive
solution. For constant time step and equal time step for all components, this
overhead is roughly a factor 5 for the test problem, but the overhead increases
to about a factor 100 when the time slab is locally refined. It thus remains
important to further reduce the overhead of the implementation in order to
increase the range of problems where the multi-adaptive methods give a posi-
tive speedup.

6.2 The Wave Equation

Next, we consider the wave equation,

utt −1u = 0 in �× (0,T],

∂nu = 0 on ∂�× (0,T],

u(·,0) = u0 in �,

(22)

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 21

Fig. 9. Initial data (left) and multi-adaptive time steps (right) for the solution of the wave equation.

Fig. 10. The solution of the wave equation at times t = 0.25, t = 0.4, t = 0.45, and t = 0.6.

on a two-dimensional domain �, consisting of two square sub-domains of side
length 0.5 separated by a thin wall with a narrow slit of size 0.0001 × 0.0001
at its center. The initial condition is chosen as a plane wave traversing the
domain from right to left. In Figure 9, we plot the initial data together with the
fixed multi-adaptive time steps. The resulting solution is shown in Figure 10.

The geometry of the domain � forces the discretization to be very fine close
to the narrow slit. Further away from the slit, we let the mesh be coarse. The
mesh was created by specifying a mesh size h with h ≫ w where w is the
width of the narrow slit (see Figure 11). We note that for the multi-adaptive
efficiency index µ defined in (19) to be large, the total number of elements must

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 22 · J. Jansson and A. Logg

Fig. 11. The mesh used for the solution of the wave equation on a domain intersected by a thin
wall with a narrow slit (left) and details of the mesh close to the slit (right).

be large in comparison to the number of small elements close to the narrow slit.
Furthermore, the average mesh size must be large compared to the mesh size
close to the narrow slit.

For a mono-adaptive method, a global CFL condition puts a limit on the size
of the global time step, roughly given by:

k ≤ hmin = min
x∈�

h(x), (23)

where h = h(x) is the local mesh size. With a larger time step, an explicit
method will be unstable or, correspondingly, direct fixed-point iteration on the
system of discrete equations on each time slab will not converge without suit-
able stabilization.

On the other hand, with a multi-adaptive method, the time step may be
chosen to satisfy the CFL condition only locally, that is,

k(x) ≤ h(x), x ∈ �, (24)

and as a result, the number of local steps may decrease significantly, depending
on the properties of the mesh. In this case, with k = 0.1h, the speedup for the
multi-adaptive mcG(1) method was a factor of 4.2.

7. CONCLUSIONS

We have presented algorithms and data structures for multi-adaptive time-
stepping, including the recursive construction of time slabs and efficient
interpolation of multi-adaptive solutions. The efficiency of the multi-adaptive
methods was demonstrated for a pair of benchmark problems. The multi-
adaptive methods mcG(q) and mdG(q) are available as components of DOLFIN,
together with implementations of the standard mono-adaptive cG(q) and dG(q)
methods. The ODE solvers of DOLFIN are currently being integrated with
other components of the FEniCS project, in particular the FEniCS Form Com-
piler (FFC), [Kirby and Logg 2006, 2007], in order to provide reliable, efficient,
and automatic integration of time dependent PDEs.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

Algorithms and Data Structures for Multi-Adaptive Time-Stepping · 17: 23

REFERENCES

ALEXANDER, S. G. AND AGNOR, C. B. 1998. n-body simulations of late stage planetary formation
with a simple fragmentation model. ICARUS 132, 113–124.

DAVÉ, R., DUBINSKI, J., AND HERNQUIST, L. 1997. Parallel treeSPH. New Astronomy 2, 277–297.

DAWSON, C. AND KIRBY, R. C. 2001. High resolution schemes for conservation laws with locally

varying time steps. SIAM J. Sci. Comput. 22, 6, 2256–2281.

DELFOUR, M., HAGER, W., AND TROCHU, F. 1981. Discontinuous Galerkin methods for ordinary
differential equations. Math. Comp. 36, 455–473.

DUPONT, T., HOFFMAN, J., JOHNSON, C., KIRBY, R. C., LARSON, M. G., LOGG, A., AND SCOTT,
L. R. 2003. The FEniCS project. Tech. Rep. 2003–21, Chalmers Finite Element Center Preprint
Series.

ENGSTLER, C. AND LUBICH, C. 1997. MUR8: a multirate extension of the eighth-order Dormand-
Prince method. Appl. Numer. Math. 25, 2-3, 185–192. Special issue on time integration
(Amsterdam, 1996).

ERIKSSON, K., ESTEP, D., HANSBO, P., AND JOHNSON, C. 1995. Introduction to adaptive methods
for differential equations. Acta Numerica 4, 105–158.

ERIKSSON, K. AND JOHNSON, C. 1991. Adaptive finite element methods for parabolic problems I:
A linear model problem. SIAM J. Numer. Anal. 28, No. 1, 43–77.

ERIKSSON, K. AND JOHNSON, C. 1995a. Adaptive finite element methods for parabolic problems
II: Optimal order error estimates in l∞l2 and l∞l∞. SIAM J. Numer. Anal. 32, 706–740.

ERIKSSON, K. AND JOHNSON, C. 1995b. Adaptive finite element methods for parabolic problems
IV: Nonlinear problems. SIAM J. Numer. Anal. 32, 1729–1749.

ERIKSSON, K. AND JOHNSON, C. 1995c. Adaptive finite element methods for parabolic problems
V: Long-time integration. SIAM J. Numer. Anal. 32, 1750–1763.

ERIKSSON, K., JOHNSON, C., AND LARSSON, S. 1998. Adaptive finite element methods for
parabolic problems VI: Analytic semigroups. SIAM J. Numer. Anal. 35, 1315–1325.

ERIKSSON, K., JOHNSON, C., AND THOMÉE, V. 1985. Time discretization of parabolic problems
by the discontinuous Galerkin method. RAIRO MAN 19, 611–643.

ESTEP, D. 1995. A posteriori error bounds and global error control for approximations of ordinary
differential equations. SIAM J. Numer. Anal. 32, 1–48.

ESTEP, D. AND FRENCH, D. 1994. Global error control for the continuous Galerkin finite element
method for ordinary differential equations. M2AN 28, 815–852.

ESTEP, D., LARSON, M., AND WILLIAMS, R. 2000. Estimating the error of numerical solutions
of systems of nonlinear reaction–diffusion equations. Memoirs of the American Mathematical

Society 696, 1–109.

ESTEP, D. AND STUART, A. 2002. The dynamical behavior of the discontinuous Galerkin method
and related difference schemes. Math. Comp. 71, 1075–1103.

ESTEP, D. AND WILLIAMS, R. 1996. Accurate parallel integration of large sparse systems of
differential equations. Math. Models. Meth. Appl. Sci. 6, 535–568.

FENICS. 2008. The FEniCS project. www.fenics.org.

FLAHERTY, J. E., LOY, R. M., SHEPHARD, M. S., SZYMANSKI, B. K., TERESCO, J. D., AND

ZIANTZ, L. H. 1997. Adaptive local refinement with octree load balancing for the parallel
solution of three-dimensional conservation laws. J. Para. Distrib. Comput. 47, 139–152.

FREE SOFTWARE FOUNDATION. 1999. GNU LGPL. URL:

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.

GUSTAFSSON, K., LUNDH, M., AND SÖDERLIND, G. 1988. A PI stepsize control for the numerical
solution of ordinary differential equations. BIT 28, 270–287.

HOFFMAN, J. AND LOGG, A. 2002. DOLFIN: Dynamic Object oriented Library for FINite element
computation. Tech. Rep. 2002–06, Chalmers Finite Element Center Preprint Series.

HUGHES, T. J. R., LEVIT, I., AND WINGET, J. 1983a. Element-by-element implicit algorithms for
heat-conduction. J. Eng. Mech.-ASCE 109, 576–585.

HUGHES, T. J. R., LEVIT, I., AND WINGET, J. 1983b. An element-by-element solution algorithm
for problems of structural and solid mechanics. Comput. Meth. Appl. Mech. Eng. 36, 241–254.

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

17: 24 · J. Jansson and A. Logg

HULME, B. L. 1972a. Discrete Galerkin and related one-step methods for ordinary differential
equations. Math. Comput. 26, 120, 881–891.

HULME, B. L. 1972b. One-step piecewise polynomial Galerkin methods for initial value problems.
Math. Comput. 26, 118, 415–426.

JAMET, P. 1978. Galerkin-type approximations which are discontinuous in time for parabolic equa-
tions in a variable domain. SIAM J. Numer. Anal. 15, 5, 912–928.

JOHNSON, C. 1988. Error estimates and adaptive time-step control for a class of one-step methods
for stiff ordinary differential equations. SIAM J. Numer. Anal. 25, 4, 908–926.

KIRBY, R. C. AND LOGG, A. 2006. A compiler for variational forms. ACM Trans. Math. Softw. 32,
3, 417–444.

KIRBY, R. C. AND LOGG, A. 2007. Efficient compilation of a class of variational forms. ACM Trans.

Math. Softw. 33, 3.

LEW, A., MARSDEN, J. E., ORTIZ, M., AND WEST, M. 2003. Asynchronous variational integrators.
Arch. Rational. Mech. Anal. 167, 85–146.

LOGG, A. 2003a. Multi-adaptive Galerkin methods for ODEs I. SIAM J. Sci. Comput. 24, 6,
1879–1902.

LOGG, A. 2003b. Multi-adaptive Galerkin methods for ODEs II: Implementation and applications.
SIAM J. Sci. Comput. 25, 4, 1119–1141.

LOGG, A. 2004. Automation of computational mathematical modeling. Ph.D. thesis, Chalmers
University of Technology, Sweden.

LOGG, A. 2006. Multi-adaptive Galerkin methods for ODEs III: A priori error estimates. SIAM J.

Numer. Anal. 43, 6, 2624–2646.

LOGG, A. 2007. Automating the finite element method. Arch. Comput. Methods Eng. 14, 93–138.

LOGG, A., WELLS, G. ET AL. DOLFIN: A general-purpose finite element library.
http://www.fenics.org/dolfin/.

MAKINO, J. AND AARSETH, S. 1992. On a Hermite integrator with Ahmad-Cohen scheme for
gravitational many-body problems. Publ. Astron. Soc. Japan 44, 141–151.

OSHER, S. AND SANDERS, R. 1983. Numerical approximations to nonlinear conservation laws
with locally varying time and space grids. Math. Comp. 41, 321–336.

SAVCENCO, V. 2008. Multirate numerical integration for ordinary differential equations. Ph.D.
thesis, Universiteit van Amsterdam.

SAVCENCO, V., HUNDSDORFER, W., AND VERWER, J. 2005. A multirate time stepping strategy
for parabolic PDEs. Tech. Rep. MAS–E0516, Centrum voor Wiskunde en Informatica (CWI).

SÖDERLIND, G. 2003. Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. 29, 1,
1–26.

Received June 2006; revised February 2008; accepted April 2008

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 17, Pub. date: October 2008.

