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In this short note, we discuss the basic approach to computational modeling of dynamical
systems. If a dynamical system contains multiple time scales, ranging from very fast to
slow, computational solution of the dynamical system can be very costly. By resolving the
fast time scales in a short time simulation, a model for the effect of the small time scale
variation on large time scales can be determined, making solution possible on a long
time interval. This process of computational modeling can be completely automated.
Two examples are presented, including a simple model problem oscillating at a time
scale of 10−9 computed over the time interval [0, 100], and a lattice consisting of large
and small point masses.
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1. Introduction

We consider a dynamical system of the form

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0,
(1.1)

where u: [0, T ] → R
N is the solution to be computed, u0 ∈ R

N a given initial

value, T > 0 a given final time, and f : R
N × (0, T ] → R

N a given function that

is Lipschitz-continuous in u and bounded. We consider a situation where the exact

solution u varies on different time scales, ranging from very fast to slow. Typical

examples include meteorological models for weather prediction, with fast time scales

on the range of seconds and slow time scales on the range of years, protein folding

represented by a molecular dynamics model of the form (1.1), with fast time scales
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on the range of femtoseconds and slow time scales on the range of microseconds, or

turbulent flow with a wide range of time scales.

In order to make computation feasible in a situation where computational reso-

lution of the fast time scales would be prohibitive because of the small time steps,

the given model (1.1) containing the fast time scales needs to be replaced with a

reduced model for the variation of the solution u of (1.1) on resolvable time scales.

As discussed below, the key step is to correctly model the effect of the variation at

the fast time scales on the variation on slow time scales.

The problem of model reduction is very general and various approaches have

been taken.8,6 We present below a new approach to model reduction, based on

resolving the fast time scales in a short time simulation and determining a model

for the effect of the small time scale variation on large time scales. This process

of computational modeling can be completely automated and the validity of the

reduced model can be evaluated a posteriori.

2. A Simple Model Problem

We consider a simple example illustrating the basic aspects: Find u = (u1, u2):

[0, T ] → R
2, such that

ü1 + u1 − u2
2/2 = 0 on (0, T ],

ü2 + κu2 = 0 on (0, T ], (2.1)

u(0) = (0, 1), u̇(0) = (0, 0),

which models a moving unit point mass M1 connected through a soft spring to

another unit point mass M2, with M2 moving along a line perpendicular to the

line of motion of M1, see Fig. 1. The second point mass M2 is connected to a fixed

support through a very stiff spring with spring constant κ = 1018 and oscillates

rapidly on a time scale of size 1/
√
κ = 10−9. The oscillation of M2 creates a force

Fig. 1. A simple mechanical system with large time scale ∼ 1 and small time scale ∼ 1/
√

κ.
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∼u2
2 on M1 proportional to the elongation of the spring connecting M2 to M1

(neglecting terms of order u4
2).

The short time scale of size 10−9 requires time steps of size ∼ 10−10 for full

resolution. With T = 100, this means a total of ∼ 1012 time steps for solution of

(2.1). However, by replacing (2.1) with a reduced model where the fast time scale

has been removed, it is possible to compute the (averaged) solution of (2.1) with

time steps of size ∼ 0.1 and consequently only a total of 103 time steps.

3. Taking Averages to Obtain the Reduced Model

Having realized that pointwise resolution of the fast time scales of the exact solu-

tion u of (1.1) may sometimes be computationally very expensive or even impossible,

we seek instead to compute a time average ū of u, defined by

ū(t) =
1

τ

∫ τ/2

−τ/2

u(t+ s) ds, t ∈ [τ/2, T − τ/2], (3.1)

where τ > 0 is the size of the average. The average ū can be extended to [0, T ] in

various ways. We consider here a constant extension, i.e. we let ū(t) = ū(τ/2) for

t ∈ [0, τ/2), and let ū(t) = ū(T − τ/2) for t ∈ (T − τ/2, T ].

We now seek a dynamical system satisfied by the average ū by taking the average

of (1.1). We obtain

˙̄u(t) = ¯̇u(t) = f(u, ·)(t) = f(ū(t), t) + (f(u, ·)(t) − f(ū(t), t)),

or

˙̄u(t) = f(ū(t), t) + ḡ(u, t), (3.2)

where the variance ḡ(u, t) = f(u, ·)(t) − f(ū(t), t) accounts for the effect of small

scales on time scales larger than τ . (Note that we may extend (3.2) to (0, T ] by

defining ḡ(u, t) = −f(ū(t), t) on (0, τ/2] ∪ (T − τ/2, T ].)

We now seek to model the variance ḡ(u, t) in the form ḡ(u, t) ≈ g̃(ū(t), t) and

replace (3.2) and thus (1.1) by

˙̃u(t) = f(ũ(t), t) + g̃(ũ(t), t), t ∈ (0, T ],

ũ(0) = ū0,
(3.3)

where ū0 = ū(0) = ū(τ/2). We refer to this system as the reduced model with

subgrid model g̃ corresponding to (1.1).

To summarize, if the solution u of the full dynamical system (1.1) is computa-

tionally unresolvable, we aim at computing the average ū of u. However, since the

variance ḡ in the averaged dynamical system (3.2) is unknown, we need to solve the

reduced model (3.3) for ũ ≈ ū with an approximate subgrid model g̃ ≈ ḡ. Solving

the reduced model (3.3) using e.g. a Galerkin finite element method, we obtain an

approximate solution U ≈ ũ ≈ ū. Note that we may not expect U to be close to u

pointwise in time, while we hope that U is close to ū pointwise.
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4. Modeling the Variance

There are two basic approaches to the modeling of the variance ḡ(u, t) in the form

g̃(ũ(t), t); (i) scale-extrapolation or (ii) local resolution. In (i), a sequence of solu-

tions is computed with increasingly fine resolution, but without resolving the fastest

time scales. A model for the effects of the fast unresolvable scales is then determined

by extrapolation from the sequence of computed solutions.3 In (ii), the approach

followed below, the solution u is computed accurately over a short time period,

resolving the fastest time scales. The reduced model is then obtained by computing

the variance

ḡ(u, t) = f(u, ·)(t) − f(ū(t), t) (4.1)

and then determining g̃ for the remainder of the time interval such that g̃(ũ(t), t) ≈
ḡ(u, t).

For the simple model problem (2.1), which we can write in the form (1.1) by

introducing the two new variables u3 = u̇1 and u4 = u̇2 with

f(u, ·) = (u3, u4,−u1 + u2
2/2,−κu2),

we note that ū2 ≈ 0 (for
√
κτ large) while u2

2 ≈ 1/2. By the linearity of f1, f2 and

f4, the (approximate) reduced model takes the form

¨̃u1 + ũ1 − 1/4 = 0 on (0, T ],

¨̃u2 + κũ2 = 0 on (0, T ], (4.2)

ũ(0) = (0, 0), ˙̃u(0) = (0, 0),

with solution ũ(t) =
(

1
4 (1 − cos t), 0

)

.

In general, the reduced model is constructed with subgrid model g̃ varying on

resolvable time scales. In the simplest case, it is enough to model g̃ with a constant

and repeatedly checking the validity of the model by comparing the reduced model

(3.3) with the full model (1.1) in a short time simulation. Another possibility is to

use a piecewise polynomial representation for the subgrid model g̃.

5. Solving the Reduced System

Although the presence of small scales has been decreased in the reduced system

(3.3), the small scale variation may still be present. This is not evident in the

reduced system (4.2) for the simple model problem (2.1), where we made the

approximation ũ2(0) = 0. In practice, however, we compute ũ2(0) = 1
τ

∫ τ

0
u2(t) dt =

1
τ

∫ τ

0
cos(

√
κt) dt ∼ 1/(

√
κτ) and so ũ2 oscillates at the fast time scale 1/

√
κ with

amplitude 1/(
√
κτ).

To remove these oscillations, the reduced system needs to be stabilized by intro-

ducing damping of high frequencies. Following the general approach,5 a least squares

stabilization is added in the Galerkin formulation of the reduced system (3.3) in

the form of a modified test function. As a result, damping is introduced for high

frequencies without affecting low frequencies.
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Alternatively, components such as u2 in (4.2) may be inactivated, corresponding

to a subgrid model of the form g̃2(ũ, ·) = −f2(ũ, ·). We take this simple approach

for the examples presented below.

6. Error Analysis

The validity of a proposed subgrid model may be checked a posteriori. To analyze

the modeling error introduced by approximating the variance ḡ with the subgrid

model g̃, we introduce the dual problem

−φ̇(t) = J(ū, U, t)>φ(t), t ∈ [0, T ),

φ(T ) = ψ,
(6.1)

where J denotes the Jacobian of the right-hand side of the dynamical system (1.1)

evaluated at a mean value of the average ū and the computed numerical (finite

element) solution U ≈ ũ of the reduced system (3.3),

J(ū, U, t) =

∫ 1

0

∂f

∂u
(sū(t) + (1 − s)U(t), t) ds, (6.2)

and where ψ is the initial data for the backward dual problem.

To estimate the error ē = U − ū at final time, we note that ē(0) = 0 and

φ̇+ J(ū, U, ·)>φ = 0, and write

(ē(T ), ψ) = (ē(T ), ψ) −
∫ T

0

(φ̇+ J(ū, U, ·)>φ, ē) dt

=

∫ T

0

(φ, ˙̄e− Jē) dt =

∫ T

0

(φ, U̇ − ˙̄u− f(U, ·) + f(ū, ·)) dt

=

∫ T

0

(φ, U̇ − f(U, ·) − g̃(U, ·)) dt+

∫ T

0

(φ, g̃(U, ·) − ḡ(u, ·)) dt

=

∫ T

0

(φ, R̃(U, ·)) dt+

∫ T

0

(φ, g̃(U, ·) − ḡ(u, ·)) dt.

The first term,
∫ T

0 (φ, R̃(U, ·)) dt, in this error representation corresponds to the

discretization error U − ũ for the numerical solution of (3.3). If a Galerkin finite

element method is used,1,2 the Galerkin orthogonality expressing the orthogonality

of the residual R̃(U, ·) = U̇ − f(U, ·) − g̃(U, ·) to a space of test functions can be

used to subtract a test space interpolant πφ of the dual solution φ. In the simplest

case of the cG(1) method for a partition of the interval (0, T ] into M subintervals

Ij = (tj−1, tj ], each of length kj = tj − tj−1, we subtract a piecewise constant

interpolant to obtain

∫ T

0

(φ, R̃(U, ·)) dt =

∫ T

0

(φ− πφ, R̃(U, ·)) dt ≤
M
∑

j=1

kj max
Ij

‖R̃(U, ·)‖l2

∫

Ij

‖φ̇‖l2 dt

≤ S[1](T ) max[0,T ] ‖kR̃(U, ·)‖l2 ,
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where the stability factor S [1](T ) =
∫ T

0 ‖φ̇‖l2 dt measures the sensitivity to dis-

cretization errors for the given output quantity (ē(T ), ψ).

The second term,
∫ T

0 (φ, g̃(U, ·) − ḡ(u, ·)) dt, in the error representation corre-

sponds to the modeling error ũ− ū. The sensitivity to modeling errors is measured

by the stability factor S [0](T ) =
∫ T

0 ‖φ‖l2 dt. We notice in particular that if the

stability factor S[0](T ) is of moderate size, a reduced model of the form (3.3) for

ũ ≈ ū may be constructed.

We thus obtain the error estimate

|(ē(T ), ψ)| ≤ S[1](T ) max
[0,T ]

‖kR̃(U, ·)‖l2 + S[0](T ) max
[0,T ]

‖g̃(U, ·) − ḡ(u, ·)‖l2 , (6.3)

including both discretization and modeling errors. The initial data ψ for the dual

problem (6.1) is chosen to reflect the desired output quantity, e.g. ψ = (1, 0, . . . , 0)

to measure the error in the first component of U .

To estimate the modeling error, we need to estimate the quantity g̃ − ḡ. This

estimate is obtained by repeatedly solving the full dynamical system (1.1) at a

number of control points and comparing the subgrid model g̃ with the computed

variance ḡ. As initial data for the full system at a control point, we take the com-

puted solution U ≈ ū at the control point and add a perturbation of appropriate

size, with the size of the perturbation chosen to reflect the initial oscillation at the

fastest time scale.

7. Numerical Results

We present numerical results for two model problems, including the simple model

problem (2.1), computed with DOLFIN4 version 0.4.10. With the option automatic

modeling set, DOLFIN automatically creates the reduced model (3.3) for a given

dynamical system of the form (1.1) by resolving the full system in a short time

simulation and then determining a constant subgrid model ḡ. Components with

constant average, such as u2 in (2.1), are automatically marked as inactive and are

kept constant throughout the simulation. The automatic modeling implemented in

DOLFIN is rudimentary and many improvements are possible, but it represents

a first attempt at the automation of modeling, following the recently presented7

directions for the automation of computational mathematical modeling.

7.1. The simple model problem

The solution for the two components of the simple model problem (2.1) is shown in

Fig. 2 for κ = 1018 and τ = 10−7. The value of the subgrid model ḡ1 is automatically

determined to 0.2495 ≈ 1/4.

7.2. A lattice with internal vibrations

The second example is a lattice consisting of a set of p2 large and (p−1)2 small point

masses connected by springs of equal stiffness κ = 1, as shown in Figs. 3 and 4.
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Fig. 2. The solution of the simple model problem (2.1) on [0, 100] (above) and on [0, 4 × 10−7]
(below). The automatic modeling is activated at time t = 2τ = 2 × 10−7.
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Fig. 3. Detail of the lattice. The arrows indicate the direction of vibration perpendicular to the
springs connecting the small mass to the large masses.

Fig. 4. Lattice consisting of p2 large masses and (p − 1)2 small masses.

Each large point mass is of size M = 100 and each small point mass is of size

m = 10−12, giving a large time scale of size ∼ 10 and a small time scale of

size ∼ 10−6.

The fast oscillations of the small point masses make the initially stationary

structure of large point masses contract. Without resolving the fast time scales and

ignoring the subgrid model, the distance D between the lower left large point mass

at x = (0, 0) and the upper right large point mass at x = (1, 1) remains constant,

D =
√

2. In Fig. 5, we show the computed solution with τ = 10−4, which manages

to correctly capture the oscillation in the diameter D of the lattice as a consequence

of the internal vibrations at time scale 10−6.
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Fig. 5. (a) Distance D between the lower left large mass and the upper right large mass and
(b) the distance d between the lower left large mass and the lower left small mass as function of
time on [0, 10] and on [0, 4 × 10−4], respectively.
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Fig. 6. The diameter D of the lattice as function of time on (a) [0, 20] and on (b) [0, 100] for
m = 10−4 and τ = 1. The solid line represents the diameter for the solution of the reduced system
(3.3) and the dashed line represents the solution of the full system (1.1).

With a constant subgrid model ḡ as in the example, the reduced model stays

accurate until the configuration of the lattice has changed sufficiently. When the

change becomes too large, the reduced model can no longer give an accurate rep-

resentation of the full system, as shown in Fig. 6. At this point, the reduced model

needs to be reconstructed in a new short time simulation.
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