Mathematics and Computation

All thought is a kind of computation. (Hobbes)

How much of mathematics is computational in spirit?
One may argue that large parts of mathematics,
including calculus, real and complex analysis, Fourier
analysis, algebra and number theory, have essential
computational (symbolic and numerical) aspects.
Further, it may appear that classical geometry
according to Euclid or topology have essential qualita-
tive aspects, while again analytic geometry and alge-
braic topology are largely computational. We know
that the scientific revolution occurred together with
the shift from Euclidean geometry to Cartesian
analytic computational geometry, which initiated the
birth of calculus by Leibniz and Newton. We also know
that from this basis the industrial society has devel-
oped with mass-production of material goods. In the
information society of today the computer is changing
science, technology, and our lives by offering mass-
processing of information. When Google responds in
asecond to a search request, this is the result of a
mathematical computation, as is the weather report,
the scanner image at the hospital, and countless other
applications.

One may thus ask what the impact of the computer
and computation is on mathematics and mathematics
education today and what it may be tomorrow?

In V. Arnold’s article in the Intelligencer, great mathe-
maticians are characterized by their inclination to
replace “blind calculations” by “clear ideas”. But are
these two really exclusive? Isn’t it more true that they
go hand in hand? That a clear idea can often have a
clear quantitative computational expression, and vice
versa?
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We believe so, and following this belief we have devel-
oped a reformed mathematics education from begin-
ning undergraduate to advanced graduate level based
on a synthesis of computation and mathematical
analysis. We refer to this as the Body&Soul Applied
Mathematics Education Reform Project, with Body
representing computation and Soul representing
mathematical analysis. Body&Soul includes a series
of text books published by Springer, together with
educational material and software available on the
project homepage www.phi.chalmers.se/bodysoul/.

In our recent book Dreams of Calculus: Perspectives
on Mathematics Education, we give an introduction to
the Body&Soul Project, by presenting some key ideas
in a non-technical way in order to hopefully reach a
larger audience. We here connect to one of the central
themes discussed in Dreams, a theme related toa
famous article from 1960 by the physicist E.P. Wigner
(Nobel Prize winner in 1963), The Unreasonable Effec-
tiveness of Mathematics in the Natural Sciences, which
may be viewed as the rationale behind much of the
mathematics education today. Wigner followed up on
Galileo's idea that the book of nature is written in the
language of mathematics. Wigner argued as follows:
Consider mathematical models such as (i) Newton’s
equations of motion and gravity, (ii) Schrisdinger’s
equation for quantum mechanics, (iii) Maxwell’s
equations for electromagnetics, (iv) the
Navier-Stokes equations for fluid dynamics, (v) the
wave equation for acoustics, (vi) Navier’s equations
for elasticity and (vii) Einstein’s equation for gravity.
Each one of these systems of differential equations
can be expressed analytically in a couple of lines and
yet each one seems to describe a very rich world of
phenomena. The equations seem to confirm Leibniz’
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idea that we live in the best of worlds, which is a world

of maximal complexity governed by the simplest
possible laws, which couples to Wigner’s paradoxical
unreasonable effectiveness. But as in every paradox,
there is a catch; the equations are difficult to solve by
analytical mathematics. The solutions may be very
complex and thus difficult to describe using analytical
mathematical formulas.

In some rare cases, analytical solutions are known.
For Newton’s equations, the solution of the two-body
problem was derived by Newton, which justified
Kepler’s laws. The success with the two-body problem
rocketed Newton to instant fame, and gave mathe-
matics an enormous boost. It appeared that Man using
mathematics could take up competition with God and
now, with no more limits to human understanding of
the world, the industrial revolution could get started.
The paradigm of our time is largely the same, with the
secret of life being uncovered in genomic biology.

The fact that neither Newton, nor anyone else after
him, could tackle even the simple three-body problem
analytically, did not seem to take away the enthu-
siasm. The situation is largely the same concerning the
solution of the other differential equations; few
analytical solutions are known and, as in the case of
Newton’s equations, the few known analytical solu-
tions are subject to intensive worship.

Today, the computer combined with computational
methods is changing the game completely. Solutions
of the equations (i)-(vii) can be computed, with more
or less computational work. And, even more impor-
tantly, this capability is now becoming available to
massive numbers of engineers, scientists and others,
Leibniz’ best of worlds is now being reformulated into
a basic question of algorithmic information theory
comparing the length of a computer program with the
length (or depth) of the information it may produce.
Since the mathematical models (i)-(vii) are short, the
computer programs for their computational solution
can also be made short, while the richness or amount
of information of their output can be very large,

For example, solving the Navier-Stokes equations
computationally, we obtain turbulent very complex
solutions as soon as the fluid viscosity is small. Just as
in the real best of worlds, where the simple interaction
of many fluid particles creates a complex turbulent
flow.

But there is a catch also in the computational form of
the best of worlds; sometimes the computational work
required becomes unattainable, even with the
combined power of all existing and conceivable
computers. This happens if we seek to compute point-
wise values in space-time of turbulent Navier-Stokes
solutions, for which only certain mean values are
computable (and observable). Direct computational
solution of Schrédinger’s equation for a system of
atoms or molecules also quickly becomes problematic
for any computer, since the number of space dimen-
sions involved is equal to three times the number of
electrons (viewing the nuclei as fixed). With 100 elec-
trons, we thus face a problem in 300 space dimen-
sions, which is a nightmare for discretization and
computation. Not even ten electrons is directly
feasible. Schrédinger’s himself understood that his
equation contains too much information, as do point-
wise values of a turbulent flow, and we thus have to go
for computing certain mean values of, for example, an
electron density instead of point values of the wave-
function for each individual electron. A computa-
tional method of this form was developed by the
chemist W, Kohn (Nobel Prize winner in 1998), which
is now routinely used in molecular simulations.

The situation is the same for the other equations in
the list (i)-(vii); computational solution remains a
main challenge in many cases. To tackle this problem,
adaptive computational methods are now being devel-
oped. Adaptive methods compute certain output
quantities (e.g. mean values in a turbulent flow) with a
given accuracy at minimal computational cost.



Using adaptive methods, it is today possible to reliably
compute certain aspects of turbulent flow, e.g, the
mean value of the drag coefficient of a bluff body such
as a car, using a standard laptop computer.

However, the main challenges remain: In simulations
of protein folding (a basic process of life) using mole-
cular dynamics, the time scales range from femtosec-
onds (10_15) to microseconds (10_6), which makes
direct simulation impossible. We encounter similar
difficulties with large ranges of scales in space-time is
present in many applications. Computational solution
of Einstein’s equation is also essentially an open
problem.

Returning to Wigner’s unreasonable effectiveness, we
may rephrase this today as the reasonable effectiveness
of computational mathematics. Using computational
mathematics, it is possible to model and simulate
many complex phenomena in many different areas of
application, but we have to pay a computational cost
(time and money).

Thus, the solution of (i)-(vii) does not come for free,
which would have been unreasonable. We have to pay
aprice, which after all is reasonable, The development
of computational methods over the last 50 years since
the birth of the computer has only scratched the
surface of the field of computation, and offers a rich
field for mathematical exploration with the goal of
getting more for less, following the basic principle of
our modern market economy.

A main challenge today is thus to extend the realm of
the reasonable effectiveness of computational mathe-
matics to equations such as Schrodinger’s and
Einstein’s, which are now (partly) out of reach. We
hope that the mathematical community is ready to
take on the challenge.

A final word about mathematics education: Since
computation is now opening entirely new possibilities
in mathematical modeling of real world phenomena,
mathematics education needs to be reformed on all
levels to properly take advantage of the new best world
of computational mathematics.
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For a more detailed account of the authors' thoughts
on mathematics education, see their new book:
Dreams of Calculus.

Perspectives on Mathematics Education.
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