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Abstract: At the heart of any finite element simulation is the assembly of matrices
and vectors from discrete variational forms. We propose a general interface between
problem-specific and general-purpose components of finite element programs. This interface
is called Unified Form-assembly Code (UFC). A wide range of finite element problems is
covered, including mixed finite elements and discontinuous Galerkin methods. We discuss
how the UFC interface enables implementations of variational form evaluation to be
independent of mesh and linear algebra components. UFC does not depend on any external
libraries, and is released into the public domain.
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1 Introduction

Software for solving physical problems has traditionally
been tailored to the problem at hand, often resulting
in computationally very efficient special-purpose codes.
However, experience has shown that such codes may
be difficult and costly to extend to new problems.
To decrease turn-over time from problem definition to
its numerical solution, scientific code writers have to an
increasingly larger extent tried to create general libraries,
containing common numerical algorithms applicable to
a wide range of problems. Such libraries can reduce
the size of the application code dramatically and hide
implementation details. In the field of finite element
solution of partial differential equations, many general
and successful libraries have emerged during the last
couple of decades, e.g., Cactus, Cogito, COMSOL
Multiphysics, Deal.II, Diffpack, DOLFIN (FEniCS),
Getfem++, Kaskade, Sundance, and UG (see the
reference list for papers and websites).

General finite element libraries implement many
standard mathematical and numerical concepts, but the
software components are often not as carefully designed
as their mathematical counterparts. From a software
engineering point of view it is important to achieve clear
separation of the various software components that build
up a finite element library, such that each component can
be replaced separately. Not only does this offer greater
flexibility for application and library developers, but it
also makes the software easier to maintain, especially
under changing requirements of several developers in
long-term projects. These arguments have received much
attention by developers of general finite element libraries
in recent years (see, e.g., Bangerth et al., 2007; Bastian
et al., 2008a).

Well designed libraries provide clear interfaces to
represent this separation. Typically, the application code
uses functions or objects in the interface to perform basic
‘high level’ steps of the solution process. Problem-specific
details, such as the variational form, the mesh and
coefficients are passed through the interface to the
library to compute a solution. Such libraries and their
interfaces are generally referred to as Problem Solving
Environments (PSEs).

However, one fundamental issue in designing such
software libraries is how to separate problem-specific

code from general library code. Some components, such
as computational meshes and linear algebra, may be
implemented as reusable components (e.g., as a set of
C++ classes) with well-defined interfaces. However, other
components, such as variational forms, are intrinsically
problem-specific. As a result, those components must
either be implemented and provided by the user or
generated automatically by the library from a high-level
description of the variational form. In either case,
it becomes important to settle on a well-defined interface
for how the library should communicate with those
problem-specific components.

The design of such an interface is the subject of
the present paper. We propose a C++ interface called
UFC, which provides an interface between general
reusable finite element libraries and problem-specific
code. In other libraries, the implementation of finite
elements and variational forms is usually tied to the
specific mesh, matrix and vector format in use, while
in UFC we have strived to decouple these concepts.
Furthermore, the interface is designed to allow for a
variety of elements such as continuous and discontinuous
Lagrange, Nedelec and Raviart-Thomas elements.

To make a successful interface, one needs a
sufficiently general framework for the underlying
mathematical structures and operations. The software
interface in the current paper relies on a more general
view of variational forms and finite element assembly
than commonly found in textbooks. We therefore
precisely state the mathematical background and
notation in Sections 2 and 3.

UFC is significantly inspired by our needs in the
tools FFC, SFC, and DOLFIN, which are software units
within FEniCS, see Kirby and Logg (2006, 2007), Alnæs
and Mardal (2008), and Logg (2007). The interplay
between these tools and UFC is explained in Section 4,
which provides additional and more specific motivation
for the design of UFC. Highlights of the interface are
covered in Section 5. Section 6 contains some examples
of high-level specifications of variational forms with
the form compilers FFC and SFC, which automatically
generate code compatible with the UFC interface for
computing element matrices and vectors. We also explain
how the interface can be used with existing libraries.

We here note that as a result of the UFC interface,
the two form compilers FFC and SFC may now be used
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interchangeably since both generate code conforming to
the UFC interface. These form compilers were developed
separately and independently. The work on UFC was
initially inspired by our efforts to unify the interfaces for
these form compilers.

1.1 Related work

One major reason for the success of general finite
element libraries is that many widely different physical
problems can be solved by quite short application
codes utilising the same library. The opposite strategy,
i.e., one application utilising different alternative
libraries, has received less attention. For example, an
application might want to use an adaptive mesh data
structure and its functionality from one library, a very
efficient assembly routine from another library, basic
iterative methods from, e.g., PETSc, combined with a
preconditioner from Trilinos or Hypre. To make this
composition a true plug-and-play operation, the various
libraries would need to conform to a unified interface
to the basic operations needed in finite element solvers.
Alternatively, low level interfaces can be implemented
with thin wrapper code to connect separate software
components.

In numerical linear algebra, the BLAS and LAPACK
interfaces have greatly simplified code writing. By
expressing operations in the application code in terms
of BLAS and LAPACK calls, and using the associated
data (array) formats, one program can be linked to
different implementations of the BLAS and LAPACK
operations. Despite the great success of this approach,
the idea has to little extent been explored in other
areas of computational science. One recent example is
Easyviz (Ring et al., 2008), a thin unified interface
to curve plotting and 2D/3D scalar- and vector-field
visualisation. This interface allows an application
program to use a MATLAB-compatible syntax to create
graphics, independently of the choice of graphics package
(Gnuplot, Grace, MATLAB, VTK, VisIt, OpenDX,
etc.). Another example is GLAS (Meerbergen, 2008),
a community initiative to specify a general interface
for linear algebra libraries. GLAS can be viewed as an
extension and modernisation of the BLAS/LAPACK
idea, utilising powerful constructs offered by C++.

Within finite elements, DUNE (Bastian et al., 2008a,
2008b) is a very promising attempt to define unified
interfaces between application code and libraries for
finite element computing. DUNE provides interfaces
to data structures and solution algorithms, especially
finite element meshes and iterative solution methods for
linear systems. In principle, one can write an application
code independently of the mesh data structure and the
matrix solution method. DUNE does not directly address
interfaces between the finite element problem definition
(element matrices and vectors), and the assembly process,
which is the topic of the present paper. Another
difference between DUNE and our UFC interface is the
choice of programming technology used in the interface:

DUNE relies heavily on inlining via C++ templates for
efficient single-point data retrieval, while UFC applies
pointers to chunks of data. However, our view of a finite
element mesh can easily be adapted to the DUNE-Grid
interface. The DUNE-FEM module (under development)
represents interfaces to various discretisation operators
and serves some of the purposes of the UFC interface,
though being technically quite different.

In the finite element world, there are many
competing libraries, each with their own specialties. Thin
interfaces offering only the least common denominator
functionality do not support special features for special
problems and may therefore be met with criticism.
Thick interfaces, trying to incorporate ‘all’ functionality
in ‘all’ libraries, become too complicated to serve the
original purpose of simplifying software development.
Obtaining community consensus for the thickness and
syntax of a unified interface is obviously an extremely
challenging process. The authors of this paper suggest
another approach: a small group of people defines a thin
(and hence efficient and easy-to-use) interface, they make
the software publicly available together with a detailed
documentation, and demonstrate its advantages. This is
our aim with the present paper.

2 Finite element discretisation

2.1 The finite element

A finite element is mathematically defined as a triplet
consisting of a polygon, a polynomial function space, and
a set of linear functionals, see Ciarlet (1978). Given that
the dimension of the function space and the number of
the (linearly independent) linear functionals are equal,
the finite element is uniquely defined. Hence, we will refer
to a finite element as a collection of

• a polygon K

• a polynomial space PK on K

• a set of linearly independent linear functionals, the
degrees of freedom, �i : PK → R, i = 1, 2, . . . , nK .

With this definition the basis functions {φK
i }nK

i=1 are
obtained by solving the following system of equations,

�i(φK
j ) = δij , i, j = 1, 2, . . . , nK . (1)

The computation of such a nodal basis can be
automated, given (a basis for) the polynomial space PK

and the set of linear functionals {�i}nK
i=1, see Kirby (2004)

and Alnæs and Mardal (2008).

2.2 Variational forms

Consider the Poisson problem −∇ · (w∇u) = f with
Dirichlet boundary conditions on a domain Ω ⊂ R

d.
Multiplying by a test function v ∈ Vh and integrating by
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parts, one obtains the variational problem∫
Ω

w∇v · ∇uh dx =
∫

Ω
vf dx, ∀v ∈ Vh, (2)

for the approximation uh ∈ Vh. If w, f ∈ Wh for
some discrete function space1 Wh we may thus write
equation (2) as

a(v, uh; w) = L(v; f) ∀v ∈ Vh, (3)

where the trilinear form a : Vh × Vh × Wh → R is
given by

a(v, uh; w) =
∫

Ω
w∇v · ∇uhdx (4)

and the bilinear form L : Vh × Wh → R is given by

L(v; f) =
∫

Ω
vfdx. (5)

Note here that a is bilinear for any given fixed w ∈ Wh

and L is linear for any given fixed f ∈ Wh.
In general, we shall be concerned with the

discretisation of finite element variational forms of
general arity r + n > 0,

a : V 1
h × V 2

h × · · · × V r
h × W 1

h × W 2
h × · · · × Wn

h → R,
(6)

defined on the product space V 1
h × V 2

h × · · · × V r
h ×

W 1
h × W 2

h × · · · × Wn
h of two sets {V j

h }r
j=1, {W j

h}n
j=1

of discrete function spaces on Ω. We refer to
(v1, v2, . . . , vr) ∈ V 1

h × V 2
h × · · · × V r

h as primary
arguments, and to (w1, w2, . . . , wn) ∈ W 1

h × W 2
h × · · · ×

Wn
h as coefficients and write

a = a(v1, . . . , vr; w1, . . . , wn). (7)

In the simplest case, all function spaces are equal but
there are many important examples, such as mixed
methods, where the arguments come from different
function spaces. The choice of coefficient function spaces
depends on the application; a polynomial basis simplifies
exact integration, while in some cases evaluating
coefficients in quadrature points may be required.

2.3 Discretisation

To discretise the form a, we introduce a set of bases
{φ1

i }N1

i=1, {φ2
i }N2

i=1, . . . , {φr
i }Nr

i=1 for the function spaces
V 1

h , V 2
h , . . . , V r

h respectively and let i = (i1, i2, . . . , ir) be
a multiindex of length |i| = r. The form a then defines a
rank r tensor given by

Ai = a(φ1
i1 , φ

2
i2 , . . . , φ

r
ir

; w1, w2, . . . , wn) ∀i ∈ I, (8)

where I is the index set

I =
r∏

j=1

[1, |V j
h |]

(9)
= {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (N1, N2, . . . , Nr)}.

We refer to the tensor A as the discrete operator
generated by the form a and the particular choice of basis
functions. For any given form of arity r + n, the tensor A
is a (typically sparse) tensor of rank r and dimension
|V 1

h | × |V 2
h | × · · · × |V r

h | = N1 × N2 × · · · × Nr.
Typically, the rank r is 0, 1, or 2. When r = 0, the

tensor A is a scalar (a tensor of rank zero), when r = 1,
the tensor A is a vector (the ‘load vector’) and when
r = 2, the tensor A is a matrix (the ‘stiffness matrix’).
Forms of higher rank also appear, though they are rarely
assembled as a higher-dimensional sparse tensor.

Note here that we consider the functions
w1, w2, . . . , wn as fixed in the sense that the discrete
operator A is computed for a given set of functions,
which we refer to as coefficients. As an example, consider
again the variational problem (2) for Poisson’s equation.
For the trilinear form a, the rank is r = 2 and the
number of coefficients is n = 1, while for the linear
form L, the rank is r = 1 and the number of coefficients
is n = 1. We may also choose to directly compute the
action of the form a obtained by assembling a vector
from the form

a(v1; w1, w2) =
∫

Ω
w1∇v1 · ∇w2 dx, (10)

where now r = 1 and n = 2.
We list below a few other examples to illustrate the

notation.

Example 2.1: Our first example is related to the
divergence constraint in fluid flow. Let the form a be
given by

a(q, u) =
∫

Ω
q∇ · u dx, q ∈ V 1

h , u ∈ V 2
h , (11)

where V 1
h is a space of scalar-valued functions and

where V 2
h is a space of vector-valued functions. The

form a : V 1
h × V 2

h → R has two primary arguments and
thus r = 2. Furthermore, the form does not depend on
any coefficients and thus n = 0.

Example 2.2: Another common form in fluid flow (with
variable density) is

a(v, u; w, �) =
∫

Ω
�(w · ∇u) · v dx. (12)

Here, v ∈ V 1
h , u ∈ V 2

h , w ∈ W 1
h , � ∈ W 2

h , where V 1
h , V 2

h ,
and W 1

h are spaces of vector-valued functions, while
W 2

h is a space of scalar-valued functions. The form
takes four arguments, where two of the arguments are
coefficients,

a : V 1
h × V 2

h × W 1
h × W 2

h → R. (13)

Hence, r = 2 and n = 2.

Example 2.3: We next consider the following form
appearing in nonlinear convection-diffusion with a
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power-law viscosity,

a(v; w, µ, �)

=
∫

Ω
�(w · ∇w) · v + µ|∇w|2q∇w : ∇v dx. (14)

Here, v ∈ V 1
h , w ∈ W 1

h , µ ∈ W 2
h , � ∈ W 3

h , where V 1
h , and

W 1
h are spaces of vector-valued functions, while W 2

h

and W 3
h are spaces of scalar-valued functions. The form

takes four arguments, where three of the arguments are
coefficients,

a : V 1
h × W 1

h × W 2
h × W 3

h → R. (15)

Hence, r = 1 and n = 3.

Example 2.4: The H1(Ω) norm of the error e = u − uh

squared is

a(; u, uh) =
∫

Ω
(u − uh)2 + |∇(u − uh)|2 dx. (16)

The form takes two arguments and both are coefficients,

a : W 1
h × W 2

h → R. (17)

Hence, r = 0 and n = 2.

Defining variational forms for coupled PDEs can
be performed in two ways in the above described
framework. One approach is to couple the variational
forms on the linear algebra level, using block vectors and
block matrices and defining one form for each block.
Alternatively, a single form for the coupled system may
be defined using mixed finite elements.

3 Finite element assembly

The standard algorithm for computing the global sparse
tensor A is known as assembly, see Zienkiewicz et al.
(1967–2005) and Hughes (1987). By this algorithm, the
tensor A may be computed by assembling (summing)
the contributions from the local entities of a finite
element mesh. To express this algorithm for assembly of
the global sparse tensor A for a general finite element
variational form of rank r, we introduce the following
notation and assumptions.

Let T = {K} be a set of disjoint cells (a triangulation
or tesselation) partitioning the domain Ω = ∪K∈T K.
Further, let ∂eT denote the set of exterior facets (the set
of cell facets on the boundary ∂Ω), and let ∂iT denote
the set of interior facets (the set of cell facets not on
the boundary ∂Ω). For each discrete function space V j

h ,
j = 1, 2, . . . , r, we assume that the global basis {φj

i}Nj

i=1
is obtained by patching together local function spaces
Pj

K on each cell K as determined by a local-to-global
mapping.

We shall further assume that the variational form (6)
may be expressed as a sum of integrals over the
cells T , the exterior facets ∂eT and the interior

facets ∂iT . We shall allow integrals expressed on
disjoint subsets T = ∪nc

k=1Tk, ∂eT = ∪ne

k=1∂eTk and
∂iT = ∪ni

k=1∂iTk respectively.
We thus assume that the form a is given by

a(v1, . . . , vr; w1, . . . , wn)

=
nc∑

k=1

∑
K∈Tk

∫
K

Ic
k(v1, . . . , vr; w1, . . . wn) dx

+
ne∑

k=1

∑
S∈∂eTk

∫
S

Ie
k(v1, . . . , vr; w1, . . . , wn) ds

+
ni∑

k=1

∑
S∈∂iTk

∫
S

Ii
k(v1, . . . , vr; w1, . . . , wn) ds. (18)

We refer to an integral over a cell K as a cell integral,
an integral over an exterior facet S as an exterior facet
integral (typically used to implement Neumann and
Robin type boundary conditions), and to an integral over
an interior facet S as an interior facet integral (typically
used in discontinuous Galerkin methods).

For simplicity, we consider here initially assembly of
the global sparse tensor A corresponding to a form a
given by a single integral over all cells T , and later
extend to the general case where we must also account
for contributions from several cell integrals, interior facet
integrals and exterior facet integrals.

We thus consider the form

a(v1, . . . , vr; w1, . . . , wn)

=
∑
K∈T

∫
K

Ic(v1, . . . , vr; w1, . . . , wn) dx, (19)

for which the global sparse tensor A is given by

Ai =
∑
K∈T

∫
K

Ic(φ1
i1 , . . . , φ

r
ir

; w1, . . . , wn) dx. (20)

To see how to compute the tensor A by summing
the local contributions from each cell K, we let nj

K =
|Pj

K | denote the dimension of the local finite element
space on K for the jth primary argument vj ∈ V j

h for
j = 1, 2, . . . , r. Furthermore, let

ιjK : [1, nj
K ] → [1, N j ] (21)

denote the local-to-global mapping for V j
h , that is, on

any given K ∈ T , the mapping ιjK maps the number
of a local degree of freedom (or, equivalently, local
basis function) to the number of the corresponding
global degree of freedom (or, equivalently, global basis
function). We then define for each K ∈ T the collective
local-to-global mapping ιK : IK → I by

ιK(i) = (ι1K(i1), ι2K(i2), . . . , ιrK(ir)) ∀i ∈ IK , (22)

where IK is the index set

IK =
r∏

j=1

[1, |Pj
K |]

= {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (n1
K , n2

K , . . . , nr
K)}.

(23)
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Furthermore, for each V j
h we let {φK,j

i }nj
K

i=1 denote the
restriction to an element K of the subset of the basis
{φj

i}Nj

i=1 ⊂ Pj
K of V j

h supported on K.
We may now compute A by summing the

contributions from the local cells,

Ai =
∑

K∈Ti

∫
K

Ic(φ1
i1 , . . . , φ

r
ir

; w1, . . . , wn) dx

=
∑

K∈Ti

∫
K

Ic
(
φK,1

(ι1K)−1(i1)
, . . . , φK,r

(ιr
K)−1(ir); w1, . . . , wn

)
dx

=
∑

K∈Ti

AK
ι−1
K (i), (24)

where AK is the local cell tensor on cell K (the ‘element
stiffness matrix’), given by

AK
i =

∫
K

Ic
(
φK,1

i1
, . . . , φK,r

ir
; w1, . . . , wn

)
dx, (25)

and where Ti denotes the set of cells on which all basis
functions φ1

i1
, φ2

i2
, . . . , φr

ir
are supported. Similarly, we

may sum the local contributions from the exterior and
interior facets in the form of local exterior facet tensors
and interior facet tensors.

In Algorithm 1, we present a general algorithm
for assembling the contributions from the local cell,
exterior facet and interior facet tensors into a global
sparse tensor. In all cases, we iterate over all entities
(cells, exterior or interior facets), compute the local cell
tensor AK (or exterior/interior facet tensor AS) and
add it to the global sparse tensor as determined by the
local-to-global mapping, see Figure 1.

Figure 1 Adding the entries of a cell tensor AK to the global
tensor A using the local-to-global mapping ιK ,
illustrated here for a rank two tensor (a matrix)
(see online version for colours)

4 Software framework for finite element assembly

In a finite element application code, typical input from
the user is the variational (weak) form of a PDE, a choice
of finite elements, a geometry represented by a mesh, and
user-defined functions that appear as coefficients in the
variational form. For a linear PDE, the typical solution
procedure consists of first assembling a (sparse) linear
system AU = b from given user input and then solving

that linear system to obtain the degrees of freedom U
for the discrete finite element approximation uh of the
exact solution u of the PDE. Even when the solution
procedure is more involved, as for a nonlinear problem
requiring an iterative procedure, each iteration may
involve assembling matrices and vectors. It is therefore
clear that the assembly of matrices and vectors (or in
general tensors) is an important task for any finite
element software framework. We refer to the software
component responsible for assembling a global tensor
from given user input consisting of a variational form,
finite element function spaces, mesh and coefficients as
the Assembler.

As demonstrated in Algorithm 1, the Assembler needs
to iterate over the cells in the mesh, tabulate degree of
freedom mappings, extract local values of coefficients,
compute the local element tensor, and add each element
tensor to the global tensor which is the final output.
Thus, the Assembler is a software component where
many other components are combined. It is therefore
important that the software components on which
the Assembler depends have well-defined interfaces.
We discuss some issues relating to the design of these
software components below and then demonstrate how
these software components together with the Assembler
may be combined into a general software framework for
finite element assembly.

4.1 Variational forms

Implementations of discrete variational forms in
a general finite element library usually consist of
programming expressions for the integrands Ic

k, Ie
k , Ii

k

(see equation (18)), eventually writing a quadrature loop
and a loop over element matrix indices depending on the
abstraction level of the library (see Bangerth et al., 2007;
Langtangen, 2003b). An alternative approach is to apply
exact integration instead of quadrature. In either case,
the result of this computation may be communicated
through the UFC interface.

The motivation behind the UFC interface is to
separate the implementation of the form from other
details of the assembly such as the mesh and the linear
algebra libraries in use.

In the FEniCS finite element software framework,
a high-level form language embedded in Python is
used to define the variational form and finite elements.
This reduces the distance from the mathematical
formulation of a PDE to an implementation of a
PDE solver, removes tedious and error-prone tasks
such as coding PDE-specific assembly loops, and
enables rapid prototyping of new models and methods.
To retain computational efficiency, we generate efficient
low-level code from the abstract form description,
using exact integration where possible. Code generation
adds another complexity layer to the software, and it
becomes even more important to keep a clear separation
between software components such that the interface
between generated code and library code is well defined.
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This is achieved by generating implementations of the
UFC interface.

4.2 Mesh libraries

Many different representations of computational meshes
exist. Typically, each finite element library provides its
own internal implementation of a computational mesh.
We do not wish to tie the UFC interface to one particular
mesh representation or one particular library. Still,
several operations like the element tensor computation
depends on local mesh data. For this reason, the
UFC interface provides a low-level data structure to
communicate single cell data. In addition, a small data
structure is used to communicate global mesh dimensions
which are necessary for computing the local-to-global
mapping. Assemblers implemented on top of the UFC

interface must therefore be able to copy/translate cell
data from the mesh library being used to the UFC
data structure (involving a minimal overhead). This
makes it possible to achieve separation between the mesh
representation and the element tensor computation. The
Assembler implemented in FEniCS (as part of DOLFIN)
is implemented for one particular mesh format, see Logg
(2009), but an Assembler component could easily be
written for other mesh libraries like the PETSc Sieve,
see Knepley and Karpeev (2009) and the DUNE-Grid
interface (Bastian et al., 2008a, 2008b).

4.3 Linear algebra libraries

It is desirable to reuse existing high-performance linear
algebra libraries like PETSc and Trilinos. It is therefore
important that the Assembler is able to assemble element
tensors into global matrices and vectors implemented by
external libraries. Aggregation into matrix and vector
data structures are fairly similar operations, typically
consisting of passing array pointers to existing functions
in the linear algebra libraries. By implementing a
common interface for assembly into tensors of arbitrary
rank, the same assembly routine can be reused for
any linear algebra library without changes. This avoids
duplication of assembly code, and one may easily change
the output format of the assembly procedure. The details
of these interfaces are beyond the scope of the current
paper. At the time of writing, we have written assembly
routines with support for matrices and vectors from
Epetra (Trilinos), PETSc, PyCC, and uBLAS in addition
to scalars.

With components available for finite element
variational forms, mesh representation, and linear
algebra, we may use the UFC interface to combine
these components to build a PSE for partial differential
equations. The central component of this PSE is the
Assembler. As illustrated in Figure 2, the Assembler
takes as input a variational form, communicated through
the UFC interface, a mesh and a set of functions
(the coefficients), and assembles a tensor.

Figure 2 Assembling a tensor from a given UFC, mesh
and functions (coefficients) (see online version
for colours)

4.4 High-level interfaces

In FEniCS, we have additional application-level
abstractions for expressing variational forms, meshes,
functions and linear algebra objects to achieve a
consistent high-level user-interface. The generation of
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the UFC code may then be hidden from the user,
who just provides a high-level description of the form.
The PSE may then automatically generate the UFC at
run-time, functioning as Just-In-Time (JIT) compiler,
and call the Assembler with the generated UFC. Below,
we demonstrate how this may be done in the Python
interface of DOLFIN. The user here defines a finite
element function space, and a pair of bilinear and linear
forms a(v, u) =

∫
Ω ∇v · ∇u + vu dx and L =

∫
Ω vf dx,

from which a matrix and vector may be assembled by
calls to the function assemble. A linear system solver
may then be invoked to compute the degrees of freedom
U of the solution.

While FEniCS provides an integrated environment,
including the PSE DOLFIN and the two form compilers
FFC (FEniCS Form Compiler) and SFC (SyFi Form
Compiler), the fact that these components comply with
the UFC interface means that they may also be used
interchangeably in heterogeneous environments together
with other libraries (that implement or use the UFC
interface). This is illustrated in the flow diagram of
Figure 3 where alternate routes from mathematical
description to matrix assembly are demonstrated.

Figure 3 Alternate routes from mathematical description to
matrix assembly enabled by the UFC interface
(Note that the Diffpack example is fictional)
(see online version for colours)

In Figure 3, we have also included another interface UFL
(Unified Form Language) which provides a unified way
to express finite element variational forms. The UFL
interface is currently in development. Together, UFL and
UFC provide a unified interface for the input and output
of form compilers, see Figure 4 .

Figure 4 An abstract definition (UFL) of a finite element
variational form is given as input to a form
compiler, which generates UFC code as output
(see online version for colours)

5 The UFC interface

The UFC interface consists of a small collection of
abstract C++ classes that represent common components
for assembling tensors using the finite element method.
These classes are accompanied by a well documented
(Alnæs et al., 2008) set of conventions for numbering
of cell data and other arrays. We have strived to
make the classes as simple as possible while not
sacrificing generality or efficiency. Data is passed as
plain C arrays for efficiency and minimal dependencies.
Most functions are declared const, reflecting that
the operations they represent should not change the
outcome of future operations.2 Other initialisation of
implementation-specific data should ideally be performed
in constructors.

One can ask why the UFC interface consists of
classes and not plain functions. There are three reasons
for this. First, we want to handle each form as a self
contained ‘black box’, which can be passed around
easily in an application. Many functions belong together
conceptually, thus making it natural to collect them in
a class ‘namespace’. Second, we need multiple versions
of each function in the software representation of
variational forms, in particular to represent multiple
variational forms and multiple finite element function
spaces. This is best achieved by making each such
function a member function of a class and having
multiple instances of that class. Third, UFC function
implementations may need access to stored data, and
with a plain function-based interface these data would
then need to be global variables. In particular, when
existing libraries or applications want to implement the
UFC interface, it may be necessary for the subclasses of
UFC classes to inherit from existing classes or to have
pointers to other objects.

5.1 Class relations

Figure 5 shows all the classes and their relations.
The classes mesh, cell, and function provide
the means for communicating mesh and coefficient
function data as arguments. Each argument of the
form (both primary arguments and coefficients) is
represented by a finite_element and dof_map
object. The integrals are represented by one of the classes
cell_integral, exterior_facet_integral, or
interior_facet_integral. An object of the class
form gives access to all other objects in a particular
implementation. In this paper, we will not describe all
the functions of these classes in detail. A complete
specification can be found in the manual (Alnæs et al.,
2008).

At the core of UFC is the class form, which
represents the general variational form a of
equation (18). Subclasses of form must implement
factory functions which may be called to create
cell_integral, exterior_facet_integral and
interior_facet_integral objects. These objects in
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Figure 5 UML diagram of the UFC class relations

turn know how to compute their respective contribution
from a cell or facet during assembly. A code fragment
from the form class declaration is shown below.

The form class also specifies functions for creating
finite_element and dof_map objects for the
finite element function spaces {V j

h }r
j=1, {W j

h}n
j=1 of

the variational form. The finite_element object
provides functionality such as evaluation of degrees of
freedom and evaluation of basis functions and their
derivatives. The dof_map object provides functionality
such as tabulating the local-to-global mapping of degrees
of freedom on a single element, as well as tabulation
of subsets associated with particular mesh entities,
used to apply Dirichlet boundary conditions and build
connectivity information.

Both the finite_element and dof_map classes
can represent mixed elements, in which case it is
possible to obtain finite_element and dof_map
objects for each sub-element in a hierarchical manner.
Vector elements composed of scalar elements are in
this context seen as special cases of mixed elements
where all sub-elements are equal. Thus, e.g., from a
dof_map representing a P2 − P1 Taylor-Hood element,
it is possible to extract one dof_map for the
quadratic vector element and one dof_map for the
linear scalar element. From the vector element, a
dof_map for the quadratic scalar element of each vector

component can be obtained. This can be used to access
subcomponents from the solution of a mixed system.

5.2 Stages in the assembly algorithm

Next, we focus on a few key parts of the interface and
explain how these can be used to implement the assembly
algorithm (Algorithm 1). This algorithm consists of three
stages:

i assembling the contributions from all cells

ii assembling the contributions from all exterior
facets

iii assembling the contributions from all interior
facets.

Each of the three assembly stages (i)–(iii) of Algorithm 1
is further composed of five steps. In the first step,
the polygon K is fetched from the mesh, typically
implemented by filling a cell structure (see Figure 6)
with coordinate data and global numbering of the mesh
entities in the cell. This step depends on the specific mesh
being used.

Figure 6 Data structure for communicating single cell data

Secondly, the local-to-global mapping of degrees of
freedom is tabulated for each of the function spaces.
That is, for each of the discrete finite element spaces
on K, we tabulate (or possibly compute) the global
indices for the degrees of freedom on {V j

h }r
j=1 and

{W j
h}n

j=1.
The class dof_map represents the mapping

between local and global degrees of freedom for
a finite element space. A dof_map is initialised
with global mesh dimensions by calling the function
init_mesh(const mesh& m). If this function
returns true, the dof_map should be additionally
initialised by calling the function init_cell
(const mesh& m, const cell& c) for each cell in
the global mesh, followed by init_cell_finalize
after the last cell. After the initialisation stage, the
mapping may be tabulated at a given cell by calling a
function with the following signature.
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Here, unsigned int* dofs is a pointer to the first
element of an array of unsigned integers that will be
filled with the local-to-global mapping on the current cell
during the function call.

In the third step of each stage of Algorithm 1, we may
use the tabulated local-to-global mapping to interpolate
(extract) the local values of any of the coefficients in
{W j

h}n
j=1.

If a coefficient wj is not given as a linear combination
of basis functions for W j

h , it must at this step be
interpolated into W j

h , using the interpolant defined by
the degrees of freedom of W j

h (for example point
evaluation at a set of nodal points). In this case, the
coefficient function is passed as an implementation of the
function interface (a simple functor) to the function
evaluate_dofs.

In the fourth step, the local element tensor
contributions (cell or exterior/interior facet tensors)
are computed. This is done by a call to the function
tabulate_tensor, illustrated below for a cell integral.

Similarly, one may evaluate interior and exterior facet
contributions using slightly different function signatures.

Finally, at the fifth step, the local element tensor
contributions are added to the global tensor, using the
local-to-global mappings previously obtained by calls
to the tabulate_dofs function. This is a simple
operation that depends on the linear algebra library
in use.

6 Examples

In this section, we demonstrate how UFC is used in
practice in DOLFIN, FFC, and SFC. First, we show
a part of the assembly algorithm (Algorithm 1) as
implemented in DOLFIN. We then show examples of
input to the form compilers FFC and SFC as well
as part of the corresponding UFC code generated as
output. Examples include Poisson’s equation and linear
convection (see Example 2.2).

6.1 An example UFC assembler

To demonstrate how one may implement an assembler
based on the UFC interface, we provide here a
(somewhat simplified) excerpt from the DOLFIN
assembler.3

The outer loop iterates over all cells in a given
mesh. For each cell, a ufc::cell is updated and
the local-to-global mapping is constructed. We then
interpolate all the form coefficients on the cell and
compute the element tensor. At the end of the iteration,
the local-to-global mapping is used to add the local
tensor to the global tensor.

6.2 FFC examples

The form compiler FFC provides a simple language for
specification of variational forms, which may be entered
either directly in Python or in text files given to the
compiler on the command-line. For each variational
form given as input, FFC generates UFC-compliant
C++ code for evaluation of the corresponding element
tensor(s).

Poisson’s equation

We consider the following input file to FFC for Poisson’s
equation.

Here, two forms a (bilinear) and L (linear) are defined.
Both the test and trial spaces are spanned by linear
Lagrange elements on triangles in two dimensions. When
compiling this code using FFC, a C++ header file
is created, containing UFC code that may be used
to assemble the global sparse stiffness matrix and
load vector. Below, we present the code generated for
evaluation of the element stiffness matrix for the bilinear
form a.

In FFC, an element tensor contribution is computed
as a tensor contraction between a geometry tensor
varying from cell to cell, and a geometry independent
tensor on a reference element, see Kirby and Logg (2006,
2007). For simple forms, like the one under discussion,
the main work is then to construct the geometry tensor,
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related to the geometrical mapping between the reference
element and physical element.

Having computed the element tensor, one needs to
compute the local-to-global mapping in order to know
where to insert the local contributions in the global
tensor. This mapping may be obtained by calling
the member function tabulate_dofs of the class
ufc::dof_map. FFC uses an implicit ordering scheme,
based on the indices of the topological entities in the
mesh. This information may be extracted from the
ufc::cell attribute entity_indices.

For Lagrange elements on triangles, each degree of
freedom is associated with a global vertex. Hence, FFC
constructs the mapping by picking the corresponding
global vertex number for each degree of freedom.

Linear convection

Consider the variational form in Example 2.2. The input
file to FFC reads as follows.

The code generated for the tabulate_tensor
function is presented below. Computations involving
coefficients are performed by interpolating the functions
w and ρ on the cell under consideration. These values
are stored in the array w below. For clarity, some code
has been omitted in this example.

The local-to-global mapping for the space of piecewise
linear vectors is computed by associating two values with
each vertex. The code generated for tabulate_dofs is
presented below.

FFC generates code for arbitrary multilinear forms and
currently supports arbitrary degree continuous Lagrange
elements, discontinuous elements, RT elements, BDM
elements, BDFM elements and Nedelec elements in two
and three space dimensions.

6.3 SFC examples

SFC is another form compiler producing UFC code, in
which the user defines variational forms in Python using
a symbolic engine based on GiNaC (Bauer et al., 2006).
It has a slightly different feature set than FFC, such as
using symbolic differentiation to automatically compute
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the Jacobi matrix of a nonlinear form. The resulting
low-level UFC code is very similar.

Power-law viscosity

Example 2.3 is specified in SFC as follows.

The syntax for defining elements and arguments is the
same as in FFC, but the integrand is specified in a slightly
different syntax.4 This code also computes the form
corresponding to the Jacobian matrix, using symbolic
differentiation. The generated code for computing the
Jacobian matrix is in this case more complicated but it
implements the UFC interface in the same manner as in
the previous examples.

In the current implementation, SFC explicitly
constructs a local-to-global mapping at run-time. In this
case, with Lagrange elements, the global coordinates
identify the degrees of freedom. The UFC interface
supports constructing the local-to-global mapping
through the init_mesh and init_cell methods of
ufc::dof_map. Below, we present the code generated
for init_cell (where we use additional structures of
type Ptv (point) for representing degrees of freedom
and the container Dof_Ptv dof for building the
local-to-global mapping).

The dof_map class is only responsible for the uniqueness
of the local-to-global mapping. Possible renumbering
strategies may be imposed by the assembler, for example
to minimise communication when assembling in parallel.

7 Discussion

We have used (generated) UFC for many applications,
including Poisson’s equation; convection–diffusion–
reaction equations; continuum equations for
linear elasticity, hyperelasticity, and plasticity; the
incompressible Navier-Stokes equations; and mixed
formulations for the Hodge Laplacian. The types of finite
elements involved include standard continuous Lagrange
elements of arbitrary order, discontinuous Galerkin
formulations, BDM elements, Raviart–Thomas elements,
Crouzeix–Raviart elements, and Nedelec elements.

The form compilers FFC and SFC are UFC
compliant, both generating efficient UFC code from
an abstract problem definition. Assemblers have been
implemented in DOLFIN and PyCC, using the DOLFIN
mesh representation, and together covering linear algebra
formats from PETSc, Trilinos (Epetra), uBLAS, and
PyCC. Parallel assembly is supported in the current
development version of DOLFIN, without requiring
any modifications to UFC since it operates on an
element level. Altogether, this demonstrates that the
UFC interface is flexible both in terms of the applications
and finite element formulations it covers, and in terms of
its interoperability with existing libraries.

One of the main limitations in the current version
of the UFC interface (v1.1) is the assumption of a
homogeneous mesh, that is, only one cell shape is allowed
throughout the mesh. Thus, although mesh ordering
conventions have been defined for the interval, triangle,
tetrahedron, quadrilateral, and hexahedron, only one
type of shape can be used at any time. Also, higher order
(non-affinely mapped) meshes are not supported in the
current version of the interface. Another limitation is that
only one fixed finite element space can be chosen for
each argument of the form, which excludes p-refinement
(increasing the element order in a subset of the cells).
All these limitations may be removed in future versions
of UFC, and we encourage interested developers to make
contact to address these limitations.

UFC provides a unified interface for code generated
as output by form compilers such as FFC and SFC.
Similarly, we are currently working on a specification
for a Unified Form Language (UFL) to function
as a common input to form compilers. Currently,
both FFC and SFC provide (different) form languages
for easy specification of variational forms in a
high-level syntax. With a UFL, a user may specify
a variational form in that language and assemble the
corresponding discrete operator (tensor), independently
of the components being used to generate the UFC code
from the UFL, and independently of the components
being used to assemble the tensor from the UFC
form.
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8 Conclusion

We have presented a general framework for assembly
of finite element variational forms. Based on this
framework, we have then extracted an interface (UFC)
that may be used to provide a communication layer
between general-purpose and problem-specific code for
assembly of finite element variational forms.

The interface makes minimal assumptions on the
type of problem being solved and the data structures
involved. For example, the discrete variational form may
in general be multilinear and hence assemble into a
tensor of arbitrary rank. The basic data structures used
to pass data through the interface are composed of plain
C arrays. The minimal set of assumptions on problem
and data structures enables application of the interface to
a wide range of variational forms and a large collection
of finite element libraries.

We have used the UFC interface in the
implementation of the FEniCS suite of finite element
tools. In a simple Python script, one may define
a variational form and a mesh, and assemble the
corresponding global sparse matrix (or vector). When
doing so, UFC code is generated by either of the
form compilers FFC or SFC, and passed to the
UFC-compatible assembler of the general-purpose finite
element library DOLFIN.

We encourage developers of finite element software
to use the UFC interface in their libraries. By doing
so, those libraries may directly take advantage of the
form compilers FFC or SFC to specify finite element
problems. Moreover, one can think of already existing
specifications of complicated finite element problems
that via UFC can be combined with other libraries
than the specifications were originally written for.
We have tried to make minimal assumptions to make
this possible.

We believe that UFC itself and the ideas behind it
constitute an important step towards greater flexibility
in finite element software. By code generation via tools
like FFC and SFC, this flexibility may be retained also
in combination with very high performance.
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Notes

1It is assumed that any given function may be represented
(exactly or approximately) in some finite element space.
Alternatively, functions may be approximated by quadrature.
Quadrature representation is not discussed here, but is
covered by the UFC specification and implemented by the
form compilers FFC and SFC.

2The exceptions are the functions to initialise a dof_map.
3The ufc object is here an instance of a simple DOLFIN
class that holds pointers to arrays and UFC container classes,
such as the array A and cell data ufc::cell, needed to
communicate through the UFC interface.

4The variable itg is an integral object containing information
about the mapping between physical coordinates and the
reference element.
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